Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

High resolution cryo EM analysis of HPV16 identifies minor structural protein L2 and describes capsid flexibility.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Human papillomavirus (HPV) is a significant health burden and leading cause of virus-induced cancers. HPV is epitheliotropic and its replication is tightly associated with terminal keratinocyte differentiation making production and purification of high titer virus preparations for research problematic, therefore alternative HPV production methods have been developed for virological and structural studies. In this study we use HPV16 quasivirus, composed of HPV16 L1/L2 capsid proteins with a packaged cottontail rabbit papillomavirus genome. We have achieved the first high resolution, 3.1 Å, structure of HPV16 by using a local subvolume refinement approach. The high resolution enabled us to build L1 unambiguously and identify L2 protein strands. The L2 density is incorporated adjacent to conserved L1 residues on the interior of the capsid. Further interpretation with our own software for Icosahedral Subvolume Extraction and Correlated Classification revealed flexibility, on the whole-particle level through diameter analysis and local movement with inter-capsomer analysis. Inter-capsomer expansion or contraction, governed by the connecting arms, showed no bias in the magnitude or direction of capsomer movement. We propose that papillomavirus capsids are dynamic and capsomers move as rigid bodies connected by flexible linkers. The resulting virus structure will provide a framework for continuing biochemical, genetic and biophysical research for papillomaviruses. Furthermore, our approach has allowed insight into the resolution barrier that has previously been a limitation in papillomavirus structural studies.
    • References:
      Walboomers, J. M. M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189, 12–19 (1999). (PMID: 1045148210.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F)
      Crow, J. M. HPV: the global burden. Nature 488, S2-3 (2012). (PMID: 2293243710.1038/488S2a)
      Bosch, F. X. et al. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. J. Natl. Cancer Inst. 87, 796–802 (1995). (PMID: 779122910.1093/jnci/87.11.796)
      Lewis, A., Kang, R., Levine, A. & Maghami, E. The new face of head and neck cancer: the HPV epidemic. Oncol. Williston Park N 29, 616–626 (2015).
      Lydiatt, W. M. et al. Head and Neck cancers-major changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J. Clin. 67, 122–137 (2017).
      zur Hausen, H. Human papillomaviruses in the pathogenesis of anogenital cancer. Virology 184, 9–13 (1991). (PMID: 165160710.1016/0042-6822(91)90816-T)
      Hammer, A., Rositch, A., Qeadan, F., Gravitt, P. E. & Blaakaer, J. Age-specific prevalence of HPV16/18 genotypes in cervical cancer: a systematic review and meta-analysis. Int. J. Cancer 138, 2795–2803 (2016). (PMID: 2666188910.1002/ijc.29959)
      Dickson, E. L., Vogel, R. I., Luo, X. & Downs, L. S. Recent trends in type-specific HPV infection rates in the United States. Epidemiol. Infect. 143, 1042–1047 (2015). (PMID: 2574466710.1017/S0950268814001538)
      Roden, R. B. S. & Stern, P. L. Opportunities and challenges for human papillomavirus vaccination in cancer. Nat. Rev. Cancer 18, 240–254 (2018). (PMID: 29497146645488410.1038/nrc.2018.13)
      de Martel, C., Georges, D., Bray, F., Ferlay, J. & Clifford, G. M. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob. Health 8, e180–e190 (2020). (PMID: 3186224510.1016/S2214-109X(19)30488-7)
      Hernandez, B. Y., Ton, T., Shvetsov, Y. B., Goodman, M. T. & Zhu, X. Human papillomavirus (HPV) L1 and L1–L2 virus-like particle-based multiplex assays for measurement of HPV virion antibodies. Clin. Vaccine Immunol. CVI 19, 1348–1352 (2012). (PMID: 2276129410.1128/CVI.00191-12)
      Kirnbauer, R., Booy, F., Cheng, N., Lowy, D. R. & Schiller, J. T. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl. Acad. Sci. U. S. A. 89, 12180–12184 (1992). (PMID: 13345605072210.1073/pnas.89.24.12180)
      Kirnbauer, R. et al. Efficient self-assembly of human papillomavirus type 16 L1 and L1–L2 into virus-like particles. J. Virol. 67, 6929–6936 (1993). (PMID: 823041423815010.1128/jvi.67.12.6929-6936.1993)
      Buck, C. B., Thompson, C. D., Pang, Y.-Y.S., Lowy, D. R. & Schiller, J. T. Maturation of papillomavirus capsids. J. Virol. 79, 2839–2846 (2005). (PMID: 1570900354845410.1128/JVI.79.5.2839-2846.2005)
      Buck, C. B., Pastrana, D. V., Lowy, D. R. & Schiller, J. T. Generation of HPV pseudovirions using transfection and their use in neutralization assays. Methods Mol. Med. 119, 445–462 (2005). (PMID: 16350417)
      Christensen, N. D. Cottontail rabbit papillomavirus (CRPV) model system to test antiviral and immunotherapeutic strategies. Antivir. Chem. Chemother. 16, 355–362 (2005). (PMID: 1633184110.1177/095632020501600602)
      Buck, C. B. et al. Arrangement of L2 within the papillomavirus capsid. J. Virol. 82, 5190–5197 (2008). (PMID: 18367526239519810.1128/JVI.02726-07)
      Finch, J. T. & Klug, A. The structure of viruses of the papilloma-polyoma type 3. Structure of rabbit papilloma virus, with an appendix on the topography of contrast in negative-staining for electron-microscopy. J. Mol. Biol. 13, 1–12 (1965). (PMID: 415938310.1016/S0022-2836(65)80075-4)
      Sapp, M., Fligge, C., Petzak, I., Harris, J. R. & Streeck, R. E. Papillomavirus assembly requires trimerization of the major capsid protein by disulfides between two highly conserved cysteines. J. Virol. 72, 6186–6189 (1998). (PMID: 962108711043210.1128/JVI.72.7.6186-6189.1998)
      Chen, X. S., Garcea, R. L., Goldberg, I., Casini, G. & Harrison, S. C. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol. Cell 5, 557–567 (2000). (PMID: 1088214010.1016/S1097-2765(00)80449-9)
      Dasgupta, J. et al. Structural basis of oligosaccharide receptor recognition by human papillomavirus. J. Biol. Chem. 286, 2617–2624 (2011). (PMID: 2111549210.1074/jbc.M110.160184)
      Guan, J. et al. Cryoelectron microscopy maps of human papillomavirus 16 reveal L2 densities and heparin binding site. Structure 25, 253–263 (2017). (PMID: 2806550610.1016/j.str.2016.12.001)
      Guan, J. et al. Structural comparison of four different antibodies interacting with human papillomavirus 16 and mechanisms of neutralization. Virology 483, 253–263 (2015). (PMID: 2599660810.1016/j.virol.2015.04.016)
      Cardone, G. et al. Maturation of the human papillomavirus 16 capsid. mBio 5, e01104–e1114 (2014). (PMID: 25096873412834910.1128/mBio.01104-14)
      Baker, T. S. et al. Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys. J. 60, 1445–1456 (1991). (PMID: 1663794126020410.1016/S0006-3495(91)82181-6)
      Guan, J. et al. The U4 antibody epitope on human papillomavirus 16 identified by cryo-electron microscopy. J. Virol. 89, 12108–12117 (2015). (PMID: 26401038464531910.1128/JVI.02020-15)
      Lee, H. et al. A cryo-electron microscopy study identifies the complete H16.V5 epitope and reveals global conformational changes initiated by binding of the neutralizing antibody fragment. J. Virol. 89, 1428–1438 (2015). (PMID: 2539222410.1128/JVI.02898-14)
      Lowe, J. et al. Evolutionary and structural analyses of alpha-papillomavirus capsid proteins yields novel insights into L2 structure and interaction with L1. Virol. J. 5, 150 (2008). (PMID: 19087355263094210.1186/1743-422X-5-150)
      Okun, M. M. et al. L1 Interaction domains of papillomavirus L2 necessary for viral genome encapsidation. J. Virol. 75, 4332–4342 (2001). (PMID: 1128758211417810.1128/JVI.75.9.4332-4342.2001)
      Doorbar, J. & Gallimore, P. H. Identification of proteins encoded by the L1 and L2 open reading frames of human papillomavirus 1a. J. Virol. 61, 2793–2799 (1987). (PMID: 303917025578810.1128/jvi.61.9.2793-2799.1987)
      Trus, B. L. et al. Novel structural features of bovine papillomavirus capsid revealed by a three-dimensional reconstruction to 9 A resolution. Nat. Struct. Biol. 4, 413–420 (1997). (PMID: 914511310.1038/nsb0597-413)
      Bronnimann, M. P., Chapman, J. A., Park, C. K. & Campos, S. K. A transmembrane domain and GxxxG motifs within L2 are essential for papillomavirus infection. J. Virol. 87, 464–473 (2013). (PMID: 23097431353638010.1128/JVI.01539-12)
      Raff, A. B. et al. The evolving field of human papillomavirus receptor research: a review of binding and entry. J. Virol. 87, 6062–6072 (2013). (PMID: 23536685364811410.1128/JVI.00330-13)
      Goetschius, D. J., Parrish, C. R. & Hafenstein, S. Asymmetry in icosahedral viruses. Curr. Opin. Virol. 36, 67–73 (2019). (PMID: 3125598210.1016/j.coviro.2019.05.006)
      Bai, X., McMullan, G. & Scheres, S. H. W. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40, 49–57 (2015). (PMID: 2554447510.1016/j.tibs.2014.10.005)
      Ilca, S. L. et al. Localized reconstruction of subunits from electron cryomicroscopy images of macromolecular complexes. Nat. Commun. 6, 8843 (2015). (PMID: 2653484110.1038/ncomms9843)
      Zhu, D. et al. Pushing the resolution limit by correcting the Ewald sphere effect in single-particle Cryo-EM reconstructions. Nat. Commun. 9, 1552 (2018). (PMID: 29674632590880110.1038/s41467-018-04051-9)
      Goetschius, D. J., Lee, H. & Hafenstein, S. CryoEM reconstruction approaches to resolve asymmetric features. Adv. Virus Res. 105, 73–91 (2019). (PMID: 3152270910.1016/bs.aivir.2019.07.007)
      Guan, J. et al. High-resolution structure analysis of antibody V5 and U4 conformational epitopes on human papillomavirus 16. Viruses 9, 374 (2017). (PMID: 574414910.3390/v9120374)
      Abrishami, V. et al. Localized reconstruction in Scipion expedites the analysis of symmetry mismatches in cryo-EM data. Prog. Biophys. Mol. Biol. https://doi.org/10.1016/j.pbiomolbio.2020.05.004 (2020). (PMID: 10.1016/j.pbiomolbio.2020.05.00432470354)
      Panatto, D. et al. Human papillomavirus vaccine: state of the art and future perspectives. Adv. Protein Chem. Struct. Biol. 101, 231–322 (2015). (PMID: 2657298110.1016/bs.apcsb.2015.08.004)
      Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004). (PMID: 1517312041979710.1101/gr.849004)
      Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). (PMID: 223171210.1016/S0022-2836(05)80360-2)
      Wolf, M., Garcea, R. L., Grigorieff, N. & Harrison, S. C. Subunit interactions in bovine papillomavirus. Proc. Natl. Acad. Sci. U. S. A. 107, 6298–6303 (2010). (PMID: 20308582285200810.1073/pnas.0914604107)
      Hadden, J. A. et al. All-atom molecular dynamics of the HBV capsid reveals insights into biological function and cryo-EM resolution limits. eLife 7, e32478 (2018).
      Schellenbacher, C., Roden, R. & Kirnbauer, R. Chimeric L1–L2 virus-like particles as potential broad-spectrum human papillomavirus vaccines. J. Virol. 83, 10085–10095 (2009). (PMID: 19640991274802010.1128/JVI.01088-09)
      Brendle, S. A., Culp, T. D., Broutian, T. R. & Christensen, N. D. Binding and neutralization characteristics of a panel of monoclonal antibodies to human papillomavirus 58. J. Gen. Virol. 91, 1834–1839 (2010). (PMID: 20181746305252810.1099/vir.0.017228-0)
      Pyeon, D., Lambert, P. F. & Ahlquist, P. Production of infectious human papillomavirus independently of viral replication and epithelial cell differentiation. Proc. Natl. Acad. Sci. U. S. A. 102, 9311–9316 (2005). (PMID: 15958530116664110.1073/pnas.0504020102)
      Mejia, A. F. et al. Preclinical model to test human papillomavirus virus (HPV) capsid vaccines in vivo using infectious HPV/cottontail rabbit papillomavirus chimeric papillomavirus particles. J. Virol. 80, 12393–12397 (2006). (PMID: 17005666167630310.1128/JVI.01583-06)
      Pastrana, D. V. et al. Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology 321, 205–216 (2004). (PMID: 1505138110.1016/j.virol.2003.12.027)
      Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). (PMID: 2816547310.1038/nmeth.4169)
      Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015). (PMID: 26278980676066210.1016/j.jsb.2015.08.008)
      Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012). (PMID: 23000701369053010.1016/j.jsb.2012.09.006)
      Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010). (PMID: 20124702281567010.1107/S0907444909052925)
      Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010). (PMID: 20383002285231310.1107/S0907444910007493)
      Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). (PMID: 1526425410.1002/jcc.20084)
      Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010). (PMID: 2005704410.1107/S0907444909042073)
    • Grant Information:
      R01 AI134910 United States AI NIAID NIH HHS
    • الرقم المعرف:
      0 (Capsid Proteins)
      0 (Epitopes)
      0 (L2 protein, Human papillomavirus type 16)
      0 (Oncogene Proteins, Viral)
    • الموضوع:
      Date Created: 20210211 Date Completed: 20211112 Latest Revision: 20230128
    • الموضوع:
      20231215
    • الرقم المعرف:
      PMC7876116
    • الرقم المعرف:
      10.1038/s41598-021-83076-5
    • الرقم المعرف:
      33568731