Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Attractor Concepts to Evaluate the Transcriptome-wide Dynamics Guiding Anaerobic to Aerobic State Transition in Escherichia coli.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Bui TT;Bui TT; Selvarajoo K; Selvarajoo K; Selvarajoo K
  • المصدر:
    Scientific reports [Sci Rep] 2020 Apr 03; Vol. 10 (1), pp. 5878. Date of Electronic Publication: 2020 Apr 03.
  • نوع النشر :
    Journal Article; Research Support, Non-U.S. Gov't
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      For any dynamical system, like living organisms, an attractor state is a set of variables or mechanisms that converge towards a stable system behavior despite a wide variety of initial conditions. Here, using multi-dimensional statistics, we investigate the global gene expression attractor mechanisms shaping anaerobic to aerobic state transition (AAT) of Escherichia coli in a bioreactor at early times. Out of 3,389 RNA-Seq expression changes over time, we identified 100 sharply changing genes that are key for guiding 1700 genes into the AAT attractor basin. Collectively, these genes were named as attractor genes constituting of 6 dynamic clusters. Apart from the expected anaerobic (glycolysis), aerobic (TCA cycle) and fermentation (succinate pathways) processes, sulphur metabolism, ribosome assembly and amino acid transport mechanisms together with 332 uncharacterised genes are also key for AAT. Overall, our work highlights the importance of multi-dimensional statistical analyses for revealing novel processes shaping AAT.
    • References:
      Bettenbrock, K. et al. Towards a Systems Level Understanding of the Oxygen Response of Escherichia coli. Adv. Microb. Physiol. 64, 65–114 (2014). (PMID: 10.1016/B978-0-12-800143-1.00002-6)
      Regenmortel, M. H. V. V. Reductionism and complexity in molecular biology. EMBO Rep. 5, 1016–1020 (2004). (PMID: 10.1038/sj.embor.740028412991791299179)
      Ahn, A. C., Tewari, M., Poon, C.-S. & Phillips, R. S. The Limits of Reductionism in Medicine: Could Systems Biology Offer an Alternative? PLoS Med. 3, e208 (2006). (PMID: 10.1371/journal.pmed.003020814594801459480)
      Partridge, J. D., Scott, C., Tang, Y., Poole, R. K. & Green, J. Escherichia coli transcriptome dynamics during the transition from anaerobic to aerobic conditions. J. Biol. Chem. 281, 27806–27815 (2006). (PMID: 10.1074/jbc.M603450200)
      Kim, O. D., Rocha, M. & Maia, P. A Review of Dynamic Modeling Approaches and Their Application in Computational Strain Optimization for Metabolic Engineering. Front. Microbiol. 9, 1690 (2018). (PMID: 10.3389/fmicb.2018.0169060792136079213)
      Selvarajoo, K. Complexity of biochemical and genetic responses reduced using simple theoretical models. In Methods in Molecular Biology 1702, 171–201 (Humana Press Inc., 2018).
      Selvarajoo, K. Understanding multimodal biological decisions from single cell and population dynamics. Wiley Interdiscip. Rev. Syst. Biol. Med. 4, 385–399 (2012). (PMID: 10.1002/wsbm.1175)
      Kauffman, S. A proposal for using the ensemble approach to understand genetic regulatory networks. J. Theor. Biol. 230, 581–590 (2004). (PMID: 10.1016/j.jtbi.2003.12.017)
      Huang, S. & Ingber, D. E. A non-genetic basis for cancer progression and metastasis: Self-organizing attractors in cell regulatory networks. Breast Dis. 26, 27–54 (2006). (PMID: 10.3233/BD-2007-26104)
      Mar, J. C. & Quackenbush, J. Decomposition of Gene Expression State Space Trajectories. PLoS Comput. Biol. 5, e1000626 (2009). (PMID: 10.1371/journal.pcbi.100062627911572791157)
      Kauffman, S. At Home in the Universe. October (Oxford University Press, 1995).
      Ghaffarizadeh, A., Podgorski, G. J. & Flann, N. S. Applying attractor dynamics to infer gene regulatory interactions involved in cellular differentiation. BioSystems 155, 29–41 (2017). (PMID: 10.1016/j.biosystems.2016.12.004)
      Huang, S., Eichler, G., Bar-Yam, Y. & Ingber, D. E. Cell Fates as High-Dimensional Attractor States of a Complex Gene Regulatory Network. Phys. Rev. Lett. 94, 128701 (2005). (PMID: 10.1103/PhysRevLett.94.128701)
      Antolović, V., Lenn, T., Miermont, A. & Chubb, J. R. Transition state dynamics during a stochastic fate choice. Dev. 146 (2019).
      Bargaje, R. et al. Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells. Proc. Natl. Acad. Sci. 114, 2271–2276 (2017). (PMID: 10.1073/pnas.1621412114)
      Mojtahedi, M. et al. Cell Fate Decision as High-Dimensional Critical State Transition. PLOS Biol. 14, e2000640 (2016). (PMID: 10.1371/journal.pbio.20006402802730828027308)
      Simeoni, O., Piras, V., Tomita, M. & Selvarajoo, K. Tracking global gene expression responses in T cell differentiation. Gene 569, 259–266 (2015). (PMID: 10.1016/j.gene.2015.05.0612602858726028587)
      Tsuchiya, M., Piras, V., Giuliani, A., Tomita, M. & Selvarajoo, K. Collective dynamics of specific gene ensembles crucial for neutrophil differentiation: The existence of genome vehicles revealed. PLoS One 5 (2010).
      Marr, C., Zhou, J. X. & Huang, S. Single-cell gene expression profiling and cell state dynamics: Collecting data, correlating data points and connecting the dots. Current Opinion in Biotechnology 39, 207–214 (2016). (PMID: 10.1016/j.copbio.2016.04.0152715269627152696)
      Felli, N. et al. Hematopoietic differentiation: A coordinated dynamical process towards attractor stable states. BMC Syst. Biol. 4, 85 (2010). (PMID: 10.1186/1752-0509-4-8529047362904736)
      Selvarajoo, K. & Giuliani, A. Finding self-organization from the dynamic gene expressions of innate immune responses. Front. Physiol. 3, 192 (2012). (PMID: 33716753371675)
      Tsuchiya, M. et al. Emergent Genome-Wide Control in Wildtype and Genetically Mutated Lipopolysaccarides-Stimulated Macrophages. PLoS One 4, e4905 (2009). (PMID: 10.1371/journal.pone.000490526541472654147)
      Piras, V., Chiow, A. & Selvarajoo, K. Long-range order and short-range disorder in Saccharomyces cerevisiae biofilm. Eng. Biol. 3, 12–19 (2019). (PMID: 10.1049/enb.2018.5008)
      Piras, V., Tomita, M. & Selvarajoo, K. Transcriptome-wide variability in single embryonic development cells. Sci. Rep. 4, 1–9 (2014).
      Selvarajoo, K. Large Scale-Free Network Organization is Likely Key for Biofilm Phase Transition. Eng. Biol. In Press, (2019).
      von Wulffen, J., Ulmer, A., Jäger, G., Sawodny, O. & Feuer, R. Rapid Sampling of Escherichia coli After Changing Oxygen Conditions Reveals Transcriptional Dynamics. Genes (Basel). 8 (2017).
      Tien, B. T., Giuliani, A. & Selvarajoo, K. Statistical Distribution as a Way for Lower Gene Expressions Threshold Cutoff. Org. J. Biol. Sci. 2, 55–58 (2018).
      Beal, J. Biochemical complexity drives log-normal variation in genetic expression. Eng. Biol. 1, 55–60 (2017). (PMID: 10.1049/enb.2017.0004)
      Zheng, C.-H., Yuan, L., Sha, W. & Sun, Z.-L. Gene differential coexpression analysis based on biweight correlation and maximum clique. BMC Bioinformatics 15, S3 (2014). (PMID: 10.1186/1471-2105-15-S15-S342715634271563)
      Joe, H. Multivariate dependence measures and data analysis. Comput. Stat. Data Anal. 16, 279–297 (1993). (PMID: 10.1016/0167-9473(93)90130-L)
      Giuliani, A. Collective motions and specific effectors: a statistical mechanics perspective on biological regulation. BMC Genomics 11(Suppl 1), S2 (2010). (PMID: 10.1186/1471-2164-11-S1-S228225302822530)
      Milnor, J. On the concept of attractor. Commun. Math. Phys. 99, 177–195 (1985). (PMID: 10.1007/BF01212280)
      Ghorbani, M., Jonckheere, E. A. & Bogdan, P. Gene expression is not random: Scaling, long-range cross-dependence, and fractal characteristics of gene regulatory networks. Front. Physiol. 9, 1446 (2018). (PMID: 10.3389/fphys.2018.0144662329426232942)
      Dinicola, S. et al. A systems biology approach to cancer: Fractals, attractors, and nonlinear dynamics. OMICS A Journal of Integrative Biology 15, 93–104 (2011). (PMID: 10.1089/omi.2010.0091)
      Piras, V. & Selvarajoo, K. The reduction of gene expression variability from single cells to populations follows simple statistical laws. Genomics 105, 137–144 (2015). (PMID: 10.1016/j.ygeno.2014.12.007)
      Tsuchyia, M. et al. Gene expression waves. Cell cycle independent collective dynamics in cultured cells. FEBS J. 274, 2878–2886 (2007). (PMID: 10.1111/j.1742-4658.2007.05822.x)
      Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–7 (2012). (PMID: 10.1089/omi.2011.011833393793339379)
      Maglott, D., Ostell, J., Pruitt, K. D. & Tatusova, T. Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res. 39, D52-7 (2011). (PMID: 10.1093/nar/gkq1237)
      Bateman, A. et al. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017). (PMID: 10.1093/nar/gkw1099)
      Karp, P. D. et al. The EcoCyc Database. EcoSal Plus 6 (2014).
      Maximova, S. N. et al. Genome-wide analysis reveals divergent patterns of gene expression during zygotic and somatic embryo maturation of Theobroma cacao L., the chocolate tree. BMC Plant Biol. 14, 185 (2014). (PMID: 10.1186/1471-2229-14-18541106314110631)
      He, F., Ai, B. & Tian, L. Identification of genes and pathways in esophageal adenocarcinoma using bioinformatics analysis. Biomed. Reports 9, 305–312 (2018).
      Hu, P., Jiang, L. & Wu, L. Identify differential gene expressions in fatty infiltration process in rotator cuff. J. Orthop. Surg. Res. 14, 158 (2019). (PMID: 10.1186/s13018-019-1182-165371946537194)
      Bishop, R. E., Leskiw, B. K., Hodges, R. S., Kay, C. M. & Weiner, J. H. The entericidin locus of Escherichia coli and its implications for programmed bacterial cell death. J. Mol. Biol. 280, 583–596 (1998). (PMID: 10.1006/jmbi.1998.1894)
      Iyer, S., Le, D., Park, B. R. & Kim, M. Distinct mechanisms coordinate transcription and translation under carbon and nitrogen starvation in Escherichia coli. Nat. Microbiol. 3, 741–748 (2018). (PMID: 10.1038/s41564-018-0161-3)
      Li, S. H.-J. et al. Escherichia coli translation strategies differ across carbon, nitrogen and phosphorus limitation conditions. Nat. Microbiol. 3, 939–947 (2018). (PMID: 10.1038/s41564-018-0199-262788306278830)
      Beckert, B. et al. Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1. Nature. Microbiology 3, 1115–1121 (2018).
      Schmied, W. H. et al. Controlling orthogonal ribosome subunit interactions enables evolution of new function. Nature 564, 444–448 (2018). (PMID: 10.1038/s41586-018-0773-z65251026525102)
      Prossliner, T., Skovbo Winther, K., Sørensen, M. A. & Gerdes, K. Ribosome Hibernation. Annu. Rev. Genet. 52, 321–348 (2018). (PMID: 10.1146/annurev-genet-120215-035130)
      Kovács, Á. T. et al. Anaerobic regulation of hydrogenase transcription in different bacteria. in Biochemical Society Transactions 33, 36–38 (Portland Press Limited, 2005).
      Delignette-Muller, M. L. & Dutang, C. fitdistrplus: An R package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015). (PMID: 10.18637/jss.v064.i04)
      Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002).
      Johnson, L. D., Kotz, N. L., Balakrishnan, S. & Continuous Univariate, N. Distributions. J. Am. Stat. Assoc. 91, 915 (1996).
      Kurths, J., Daub, C. O., Weise, J., Selbig, J. & Steuer. The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18(Suppl 2), S231–40 (2002). (PMID: 10.1093/bioinformatics/18.suppl_2.S231)
      Speed, T. P., Bolstad, B. M., Irizarry, R. A. & Astrand, M. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003). (PMID: 10.1093/bioinformatics/19.2.185)
      Wilks, D. S. Cluster Analysis. International Geophysics 100, (Wiley, 2011).
      Huang, S., Ernberg, I. & Kauffman, S. Cancer attractors: A systems view of tumors from a gene network dynamics and developmental perspective. Seminars in Cell and Developmental Biology 20, 869–876 (2009). (PMID: 10.1016/j.semcdb.2009.07.003)
    • الموضوع:
      Date Created: 20200405 Date Completed: 20201125 Latest Revision: 20210403
    • الموضوع:
      20231215
    • الرقم المعرف:
      PMC7125300
    • الرقم المعرف:
      10.1038/s41598-020-62804-3
    • الرقم المعرف:
      32246034