Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Emergence of life in an inflationary universe.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Totani T;Totani T;Totani T
  • المصدر:
    Scientific reports [Sci Rep] 2020 Feb 03; Vol. 10 (1), pp. 1671. Date of Electronic Publication: 2020 Feb 03.
  • نوع النشر :
    Journal Article; Research Support, Non-U.S. Gov't
  • اللغة:
    English
  • معلومة اضافية
    • المصدر:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • بيانات النشر:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • الموضوع:
    • نبذة مختصرة :
      Abiotic emergence of ordered information stored in the form of RNA is an important unresolved problem concerning the origin of life. A polymer longer than 40-100 nucleotides is necessary to expect a self-replicating activity, but the formation of such a long polymer having a correct nucleotide sequence by random reactions seems statistically unlikely. However, our universe, created by a single inflation event, likely includes more than 10 100 Sun-like stars. If life can emerge at least once in such a large volume, it is not in contradiction with our observations of life on Earth, even if the expected number of abiogenesis events is negligibly small within the observable universe that contains only 10 22 stars. Here, a quantitative relation is derived between the minimum RNA length l min required to be the first biological polymer, and the universe size necessary to expect the formation of such a long and active RNA by randomly adding monomers. It is then shown that an active RNA can indeed be produced somewhere in an inflationary universe, giving a solution to the abiotic polymerization problem. On the other hand, l min must be shorter than ~20 nucleotides for the abiogenesis probability close to unity on a terrestrial planet, but a self-replicating activity is not expected for such a short RNA. Therefore, if extraterrestrial organisms of a different origin from those on Earth are discovered in the future, it would imply an unknown mechanism at work to polymerize nucleotides much faster than random statistical processes.
    • References:
      Ruiz-Mirazo, K., Briones, C. & de la Escosura, A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014). (PMID: 10.1021/cr2004844)
      Lanier, K. A. & Williams, L. D. The Origin of Life: Models and Data. J. Mol. Evol. 84, 85–92 (2017). (PMID: 10.1007/s00239-017-9783-y)
      Szostak, J. W. The Narrow Road to the Deep Past: In Search of the Chemistry of the Origin of Life. Angew. Chem. Int. Ed. Engl. 56, 11037–11043 (2017). (PMID: 10.1002/anie.201704048)
      Kitadai, N. & Maruyama, S. Origins of building blocks of life: A review. Geosci. Front. 9, 1117–1153, https://doi.org/10.1016/j.gsf.2017.07.007 (2018). (PMID: 10.1016/j.gsf.2017.07.007)
      Yamagishi, A., Kakegawa, T. & Usui, T. (eds.) Astrobiology: From the Origins of Life to the Search for Extraterrestrial Intelligence (Springer, 2019).
      Gilbert, W. Origin of life: The RNA world. Nature 319, 618–618, https://doi.org/10.1038/319618a0 (1986). (PMID: 10.1038/319618a0)
      Orgel, L. E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 39, 99–123 (2004). (PMID: 10.1080/10409230490460765)
      Robertson, M. P. & Joyce, G. F. The origins of the RNA world. Cold Spring Harb Perspect Biol 4:a003608 (2012).
      Szostak, J. W. & Ellington, A. D. In vitro selection of functional RNA sequences. In Gesteland, R. F. and Atkins, J. F. (eds.) The RNA world : the nature of modern RNA suggests a prebiotic RNA world, chap. 20, 511–533 (Cold Spring Harbor, NY, USA, 1993).
      Johnston, W. K., Unrau, P. J., Lawrence, M. S., Glasner, M. E. & Bartel, D. P. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292, 1319–1325 (2001). (PMID: 10.1126/science.1060786)
      Horning, D. P. & Joyce, G. F. Amplification of RNA by an RNA polymerase ribozyme. Proc. Natl. Acad. Sci. USA 113, 9786–9791 (2016). (PMID: 10.1073/pnas.1610103113)
      Wachowius, F. & Holliger, P. Non-enzymatic assembly of a minimized RNA polymerase ribozyme. ChemSystemsChem 1, 12–15, https://doi.org/10.1002/syst.201900004 (2019). (PMID: 10.1002/syst.201900004)
      Cafferty, B. J. & Hud, N. V. Abiotic synthesis of RNA in water: a common goal of prebiotic chemistry and bottom-up synthetic biology. Curr. Opin. Chem. Biol. 22, 146–157, https://doi.org/10.1016/j.cbpa.2014.09.015 (2014). (PMID: 10.1016/j.cbpa.2014.09.01525438801)
      Ferris, J. P. Montmorillonite-catalysed formation of RNA oligomers: the possible role of catalysis in the origins of life. Philos. Transactions Royal Soc. B: Biol. Sci. 361, 1777–1786, https://doi.org/10.1098/rstb.2006.1903 (2006). (PMID: 10.1098/rstb.2006.1903)
      Cleaves, H. II. et al. Mineral-organic interfacial processes: potential roles in the origins of life. Chem. Soc. Rev. 41, 5502, https://doi.org/10.1039/c2cs35112a (2012). (PMID: 10.1039/c2cs35112a22743683)
      Huang, W. & Ferris, J. P. Synthesis of 35–40 mers of RNA oligomers from unblocked monomers. a simple approach to the RNA world Chem. Commun. 1458–1459 https://doi.org/10.1039/b303134a (2003).
      Huang, W. & Ferris, J. P. One-step, regioselective synthesis of up to 50-mers of RNA oligomers by montmorillonite catalysis. J. Am. Chem. Soc. 128, 8914–8919, https://doi.org/10.1021/ja061782k (2006). (PMID: 10.1021/ja061782k16819887)
      Kawamura, K. & Ferris, J. P. Kinetic and mechanistic analysis of dinucleotide and oligonucleotide formation from the 5′-phosphorimidazolide of adenosine on Na + -montmorillonite. J. Am. Chem. Soc. 116, 7564–7572, https://doi.org/10.1021/ja00096a013 (1994). (PMID: 10.1021/ja00096a013)
      Joshi, P. C., Aldersley, M. F., Delano, J. W. & Ferris, J. P. Mechanism of montmorillonite catalysis in the formation of RNA oligomers. J. Am. Chem. Soc. 131, 13369–13374, https://doi.org/10.1021/ja9036516 (2009). (PMID: 10.1021/ja903651619719166)
      Aldersley, M. F., Joshi, P. C. & Huang, Y. The comparison of hydrochloric acid and phosphoric acid treatments in the preparation of montmorillonite catalysts for RNA synthesis. Orig. Life Evol. Biospheres 47, 297–304, https://doi.org/10.1007/s11084-017-9533-6 (2017). (PMID: 10.1007/s11084-017-9533-6)
      Burcar, B. T. et al. Potential pitfalls in MALDI-TOF MS analysis of abiotically synthesized RNA oligonucleotides. Orig. Life Evol. Biospheres 43, 247–261, https://doi.org/10.1007/s11084-013-9334-5 (2013). (PMID: 10.1007/s11084-013-9334-5)
      Briones, C., Stich, M. & Manrubia, S. C. The dawn of the RNA world: Toward functional complexity through ligation of random RNA oligomers. RNA 15, 743–749, https://doi.org/10.1261/rna.1488609 (2009). (PMID: 10.1261/rna.1488609193184642673073)
      Costanzo, G., Pino, S., Ciciriello, F. & Mauro, E. D. Generation of long RNA chains in water. J. Biol. Chem. 284, 33206–33216, https://doi.org/10.1074/jbc.m109.041905 (2009). (PMID: 10.1074/jbc.m109.041905198015532785163)
      Morasch, M., Mast, C. B., Langer, J. K., Schilcher, P. & Braun, D. Dry polymerization of 3′, 5′ -cyclic GMP to long strands of RNA. Chem. Bio. Chem. 15, 879–883, https://doi.org/10.1002/cbic.201300773 (2014). (PMID: 10.1002/cbic.20130077324578245)
      Lineweaver, C. H. & Davis, T. M. Does the rapid appearance of life on earth suggest that life is common in the universe? Astrobiology 2, 293–304, https://doi.org/10.1089/153110702762027871 (2002). (PMID: 10.1089/15311070276202787112530239)
      Spiegel, D. S. & Turner, E. L. Bayesian analysis of the astrobiological implications of life's early emergence on earth. Proc. Natl. Acad. Sci. 109, 395–400, https://doi.org/10.1073/pnas.1111694108 (2012). (PMID: 10.1073/pnas.111169410822198766)
      Chen, J. & Kipping, D. On the rate of abiogenesis from a bayesian informatics perspective. Astrobiology 18, 1574–1584, https://doi.org/10.1089/ast.2018.1836 (2018). (PMID: 10.1089/ast.2018.1836)
      Pearce, B. K., Tupper, A. S., Pudritz, R. E. & Higgs, P. G. Constraining the time interval for the origin of life on earth. Astrobiology 18, 343–364, https://doi.org/10.1089/ast.2017.1674 (2018). (PMID: 10.1089/ast.2017.167429570409)
      Pearce, B. K. D., Pudritz, R. E., Semenov, D. A. & Henning, T. K. Origin of the RNA world: The fate of nucleobases in warm little ponds. Proc. Natl. Acad. Sci. 114, 11327–11332, https://doi.org/10.1073/pnas.1710339114 (2017). (PMID: 10.1073/pnas.171033911428973920)
      Benner, S. A. et al. When did Life Likely Emerge on Earth in an RNA-First Process? ChemSystemsChem 1, e1900035 (2019).
      Lingam, M. & Loeb, A. Role of stellar physics in regulating the critical steps for life. Int. J. Astrobiol. 1–20, https://doi.org/10.1017/s1473550419000016 (2019). (PMID: 10.1017/S1473550419000016)
      Licquia, T. C. & Newman, J. A. Improved Estimates of the Milky Way’s Stellar Mass and Star Formation Rate from Hierarchical Bayesian Meta-Analysis. The Astrophys. J. 806, 96, https://doi.org/10.1088/0004-637x/806/1/96 (2015). (PMID: 10.1088/0004-637x/806/1/96)
      Rudnick, G. et al. The rest-frame optical luminosity density, color, and stellar mass density of the universe from z=0 to z=3. The Astrophys. J. 599, 847–864, https://doi.org/10.1086/379628 (2003). (PMID: 10.1086/379628)
      Sandberg, A.Drexler, E. & Ord, T. Dissolving the Fermi Paradox. arXiv e-prints arXiv:1806.02404 (2018).
      Starobinsky, A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99–102, https://doi.org/10.1016/0370-2693(80)90670-x (1980). (PMID: 10.1016/0370-2693(80)90670-x)
      Kazanas, D. Dynamics of the universe and spontaneous symmetry breaking. The Astrophys. J. 241, L59, https://doi.org/10.1086/183361 (1980). (PMID: 10.1086/183361)
      Guth, A. H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356, https://doi.org/10.1103/physrevd.23.347 (1981). (PMID: 10.1103/physrevd.23.347)
      Sato, K. First-order phase transition of a vacuum and the expansion of the universe. Mon. Notices Royal Astron. Soc. 195, 467–479, https://doi.org/10.1093/mnras/195.3.467 (1981). (PMID: 10.1093/mnras/195.3.467)
      Linde, A. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389–393, https://doi.org/10.1016/0370-2693(82)91219-9 (1982). (PMID: 10.1016/0370-2693(82)91219-9)
      Albrecht, A. & Steinhardt, P. J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220–1223, https://doi.org/10.1103/physrevlett.48.1220 (1982). (PMID: 10.1103/physrevlett.48.1220)
      Koonin, E. V. The cosmological model of eternal inflation and the transition from chance to biological evolution in the history of life. Biol. Direct 2, 15, https://doi.org/10.1186/1745-6150-2-15 (2007). (PMID: 10.1186/1745-6150-2-15175400271892545)
      Liddle, A. R. & Lyth, D. H.Cosmological Inflation and Large-Scale Structure (Cambridge University Press, 2000).
      Ade, P. A. R. et al. Planck 2015 results XX. Constraints on inflation. Astron. & Astrophys. 594, A20, https://doi.org/10.1051/0004-6361/201525898 (2016). (PMID: 10.1051/0004-6361/201525898)
      Dodelson, S. & Hui, L. Horizon ratio bound for inflationary fluctuations. Phys. Rev. Lett. 91, 131301, https://doi.org/10.1103/physrevlett.91.131301 (2003).
      Liddle, A. R. & Leach, S. M., How long before the end of inflation were observable perturbations produced? Phys. Rev. D 68, 103503,  https://doi.org/10.1103/physrevd.68.103503 (2003).
      Lissauer, J. J., Dawson, R. I. & Tremaine, S. Advances in exoplanet science from Kepler. Nature 513, 336–344, https://doi.org/10.1038/nature13781 (2014). (PMID: 10.1038/nature1378125230655)
      Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on earth. Proc. Natl. Acad. Sci. 115, 6506–6511, https://doi.org/10.1073/pnas.1711842115 (2018). (PMID: 10.1073/pnas.171184211529784790)
      Nicholson, W. L. Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends Microbiol. 17, 243–250, https://doi.org/10.1016/j.tim.2009.03.004 (2009). (PMID: 10.1016/j.tim.2009.03.00419464895)
      Wesson, P. S. Panspermia, past and present: Astrophysical and biophysical conditions for the dissemination of life in space. Space Sci. Rev. 156, 239–252, https://doi.org/10.1007/s11214-010-9671-x (2010). (PMID: 10.1007/s11214-010-9671-x)
      Coveney, P. V., Swadling, J. B., Wattis, J. A. D. & Greenwell, H. C. Theory, modelling and simulation in origins of life studies. Chem. Soc. Rev. 41, 5430, https://doi.org/10.1039/c2cs35018a (2012). (PMID: 10.1039/c2cs35018a22677708)
      Carr, B. (ed.) Universe or Multiverse? (Cambridge University Press, 2009).
    • الرقم المعرف:
      0 (Nucleotides)
      0 (Polymers)
      63231-63-0 (RNA)
    • الموضوع:
      Date Created: 20200205 Date Completed: 20201109 Latest Revision: 20210202
    • الموضوع:
      20240513
    • الرقم المعرف:
      PMC6997386
    • الرقم المعرف:
      10.1038/s41598-020-58060-0
    • الرقم المعرف:
      32015390