نبذة مختصرة : La optimització amb restriccions ha estat utilitzada amb èxit par a resoldre problemes en molts dominis reals (industrials). Aquesta tesi es centra en les aproximacions lògiques, concretament en Màxima Satisfactibilitat (MaxSAT) que és la versió d’optimització del problema de Satisfactibilitat booleana (SAT). A través de MaxSAT, s’han resolt molts problemes de forma eficient. Famílies d’instàncies de la majoria d’aquests problemes han estat sotmeses a la MaxSAT Evaluation (MSE), creant així una col•lecció pública i accessible d’instàncies de referència. En les edicions recents de la MSE, els algorismes SAT-based han estat les aproximacions que han tingut un millor comportament per a les instàncies industrials. Aquesta tesi està centrada en millorar els algorismes SAT-based . El nostre treball ha contribuït a tancar varies instàncies obertes i a reduir dramàticament el temps de resolució en moltes altres. A més, hem trobat sorprenentment que reformular y resoldre el problema MaxSAT a través de programació lineal sencera era especialment adequat per algunes famílies. Finalment, hem desenvolupat el primer portfoli altament eficient par a MaxSAT que ha dominat en totes las categories de la MSE des de 2013.
نبذة مختصرة : La optimización con restricciones ha sido utilizada con éxito para resolver problemas en muchos dominios reales (industriales). Esta tesis se centra en las aproximaciones lógicas, concretamente en Máxima Satisfacibilidad (MaxSAT) que es la versión de optimización del problema de Satisfacibilidad booleana (SAT). A través de MaxSAT, se han resuelto muchos problemas de forma eficiente. Familias de instancias de la mayoría de ellos han sido sometidas a la MaxSAT Evaluation (MSE), creando así una colección pública y accesible de instancias de referencia. En las ediciones recientes de la MSE, los algoritmos SAT-based han sido las aproximaciones que han tenido un mejor comportamiento para las instancias industriales. Esta tesis está centrada en mejorar los algoritmos SAT-based. Nuestro trabajo ha contribuido a cerrar varias instancias abiertas y a reducir dramáticamente el tiempo de resolución en muchas otras. Además, hemos encontrado sorprendentemente que reformular y resolver el problema MaxSAT a través de programación lineal entera era especialmente adecuado para algunas familias. Finalmente, hemos desarrollado el primer portfolio altamente eficiente para MaxSAT que ha dominado en todas las categorías de la MSE desde 2013.
Constraint optimization has been successfully used to solve problems in many real world (industrial) domains. This PhD thesis is focused on logic-based approaches, in particular, on Maximum Satisfiability (MaxSAT) which is the optimization version of Satisfiability (SAT). There have been many problems efficiency solved through MaxSAT. Instance families on the majority of them have been submitted to the international MaxSAT Evaluation (MSE), creating a collection of publicly available benchmark instances. At recent editions of MSE, SAT-based algorithms were the best performing single algorithm approaches for industrial problems. This PhD thesis is focused on the improvement of SAT-based algorithms. All this work has contributed to close up some open instances and to reduce dramatically the solving time in many others. In addition, we have surprisingly found that reformulating and solving the MaxSAT problem through Integer Linear Programming (ILP) was extremely well suited for some families. Finally, we have developed the first highly efficient MaxSAT portfolio that dominated all categories of MSE since 2013.
No Comments.