Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Data Analysis in High-Energy Physics as a Differentiable Program

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • نبذة مختصرة :
      Machine learning methods are now ubiquitous in physics, but often target objectives that are one or two steps removed from our physics goals. A prominent example of this is the discrimination between signal and background processes, which doesn’t account for the presence of systematic uncertainties – something crucial for the calculation of quantities such as the discovery significance and upper limits.To combat this, this thesis shows that physics analysis workflows can be optimized in an end-to-end fashion, including the treatment of nuisance parameters that model systematic uncertainties, provided that the workflow is differentiable. By leveraging automatic differentiation and surrogates for non-differentiable operations, this work has made this possible for the first time, and demonstrates its use in a proof-of-concept scenario.This thesis will motivate the use of end-to-end optimization as described above, cover the techniques that make it possible, and show recent developments in a high-energy physics context. Future directions that aim to scale and apply these methods will also be highlighted.In addition to this, a method to interpolate between the signatures of new physics models is presented, which uses normalizing flows. The thesis then goes on to show the use of the technique in a search for a new scalar boson 𝑆 produced in association with a Higgs boson from a heavy new scalar 𝑋. There are also some contributions that interpolate between the event yields with Gaussian processes, and that show how we can use normalizing flows to construct a likelihood ratio-inspired observable.