Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Automated abdominal adipose tissue segmentation and volume quantification on longitudinal MRI using 3D convolutional neural networks with multi-contrast inputs.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      eScholarship, University of California, 2024.
    • الموضوع:
      2024
    • نبذة مختصرة :
      OBJECTIVE: Increased subcutaneous and visceral adipose tissue (SAT/VAT) volume is associated with risk for cardiometabolic diseases. This work aimed to develop and evaluate automated abdominal SAT/VAT segmentation on longitudinal MRI in adults with overweight/obesity using attention-based competitive dense (ACD) 3D U-Net and 3D nnU-Net with full field-of-view volumetric multi-contrast inputs. MATERIALS AND METHODS: 920 adults with overweight/obesity were scanned twice at multiple 3 T MRI scanners and institutions. The first scan was divided into training/validation/testing sets (n = 646/92/182). The second scan from the subjects in the testing set was used to evaluate the generalizability for longitudinal analysis. Segmentation performance was assessed by measuring Dice scores (DICE-SAT, DICE-VAT), false negatives (FN), and false positives (FP). Volume agreement was assessed using the intraclass correlation coefficient (ICC). RESULTS: ACD 3D U-Net achieved rapid ( 0.997) in longitudinal analysis. DISCUSSION: ACD 3D U-Net and 3D nnU-Net can be automated tools to quantify abdominal SAT/VAT volume rapidly, accurately, and longitudinally in adults with overweight/obesity.
    • File Description:
      application/pdf
    • الرقم المعرف:
      edssch.oai:escholarship.org:ark:/13030/qt6v93t78h