Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Machine Learned Cellular Phenotypes in Cardiomyopathy Predict Sudden Death.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      eScholarship, University of California, 2021.
    • الموضوع:
      2021
    • نبذة مختصرة :
      RATIONALE: Susceptibility to VT/VF (ventricular tachycardia/fibrillation) is difficult to predict in patients with ischemic cardiomyopathy either by clinical tools or by attempting to translate cellular mechanisms to the bedside. OBJECTIVE: To develop computational phenotypes of patients with ischemic cardiomyopathy, by training then interpreting machine learning of ventricular monophasic action potentials (MAPs) to reveal phenotypes that predict long-term outcomes. METHODS AND RESULTS: We recorded 5706 ventricular MAPs in 42 patients with coronary artery disease and left ventricular ejection fraction ≤40% during steady-state pacing. Patients were randomly allocated to independent training and testing cohorts in a 70:30 ratio, repeated K=10-fold. Support vector machines and convolutional neural networks were trained to 2 end points: (1) sustained VT/VF or (2) mortality at 3 years. Support vector machines provided superior classification. For patient-level predictions, we computed personalized MAP scores as the proportion of MAP beats predicting each end point. Patient-level predictions in independent test cohorts yielded c-statistics of 0.90 for sustained VT/VF (95% CI, 0.76-1.00) and 0.91 for mortality (95% CI, 0.83-1.00) and were the most significant multivariate predictors. Interpreting trained support vector machine revealed MAP morphologies that, using in silico modeling, revealed higher L-type calcium current or sodium-calcium exchanger as predominant phenotypes for VT/VF. CONCLUSIONS: Machine learning of action potential recordings in patients revealed novel phenotypes for long-term outcomes in ischemic cardiomyopathy. Such computational phenotypes provide an approach which may reveal cellular mechanisms for clinical outcomes and could be applied to other conditions.
    • File Description:
      application/pdf
    • Rights:
      public
    • الرقم المعرف:
      edssch.oai:escholarship.org:ark:/13030/qt3jm0z6gg