نبذة مختصرة : We present an efficient algorithm for multi-robot motion planning from linear temporal logic (LTL) specifications. We assume that the dynamics of each robot can be described by a discrete-time, linear system together with constraints on the control inputs and state variables. Given an LTL formula specifying the multi-robot mission, our goal is to construct a set of collision-free trajectories for all robots, and the associated control strategies, to satisfy We show that the motion planning problem can be formulated as the feasibility problem for a formula p over Boolean and convex constraints, respectively capturing the LTL specification and the robot dynamics. We then adopt a satisfiability modulo convex (SMC) programming approach that exploits a monotonicity property of p to decompose the problem into smaller subproblems. Simulation results show that our algorithm is more than one order of magnitude faster than state-of-the-art sampling-based techniques for high-dimensional state spaces while supporting complex missions.
No Comments.