Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A Paper-Based Multiplexed Serological Test to Monitor Immunity against SARS-COV-2 Using Machine Learning.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      eScholarship, University of California, 2024.
    • الموضوع:
      2024
    • نبذة مختصرة :
      The rapid spread of SARS-CoV-2 caused the COVID-19 pandemic and accelerated vaccine development to prevent the spread of the virus and control the disease. Given the sustained high infectivity and evolution of SARS-CoV-2, there is an ongoing interest in developing COVID-19 serology tests to monitor population-level immunity. To address this critical need, we designed a paper-based multiplexed vertical flow assay (xVFA) using five structural proteins of SARS-CoV-2, detecting IgG and IgM antibodies to monitor changes in COVID-19 immunity levels. Our platform not only tracked longitudinal immunity levels but also categorized COVID-19 immunity into three groups: protected, unprotected, and infected, based on the levels of IgG and IgM antibodies. We operated two xVFAs in parallel to detect IgG and IgM antibodies using a total of 40 μL of human serum sample in
    • File Description:
      application/pdf
    • Rights:
      public
    • الرقم المعرف:
      edssch.oai:escholarship.org:ark:/13030/qt0437w5t6