Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Polynomial differential equations with many real ovals in the same algebraic complex solution

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      published
    • بيانات النشر:
      Publicacions Matemàtiques, 2011.
    • الموضوع:
      2011
    • نبذة مختصرة :
      Let FolR(2, d) be the space of real algebraic foliations of degree d in RP(2). For fixed d, let IntR(2, d) = {F 2 FolR(2, d) | F has a non-constant rational first integral}. Given F 2 IntR(2, d), with primitive first integral G, set O(F) = number of real ovals of the generic level (G = c). Let O(d) = sup{O(F) | F 2 IntR(2, d)}. The main purpose of this paper is to prove that O(d) = +1 for all d _ 5.
      Let FolR(2, d) be the space of real algebraic foliations of degree d in RP(2). For fixed d, let IntR(2, d) = {F € FolR (2, d) | F has non-constant rational first integral}. Given F € IntR(2, d), with primitive first integral G, set O(F) = number of real ovals of thegeneric level (G = c). Let O(d) = sup{O(F) | F € IntR(2, d)}.The main purpose of this paper is to prove that O(d) = +∞ for all d ≥ 5.
    • File Description:
      application/pdf
    • ISSN:
      2014-4350
      0214-1493
    • Relation:
      https://www.raco.cat/index.php/PublicacionsMatematiques/article/view/244960/387498
    • الرقم المعرف:
      10.5565/244960
    • الرقم المعرف:
      edsrac.244960