Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Econometrics and Machine Learning

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut national de la statistique et des études économiques
    • بيانات النشر:
      nL: PERSEE, 2018.
    • الموضوع:
      2018
    • Collection:
      persee
      persee:doc
      persee:serie-estat
      persee:serie-estat:doc
      persee:discipline-119
      persee:discipline-119:doc
      persee:discipline-121
      persee:discipline-121:doc
      persee:discipline-106
      persee:discipline-106:doc
    • نبذة مختصرة :
      On the face of it, econometrics and machine learning share a common goal : to build a predictive model, for a variable of interest, using explanatory variables (or features). However, the two fields have developed in parallel, thus creating two different cultures. Econometrics set out to build probabilistic models designed to describe economic phenomena, while machine learning uses algorithms capable of learning from their mistakes, generally for classification purposes (sounds, images, etc.). Yet in recent years, learning models have been found to be more effective than traditional econometric methods (the price to pay being lower explanatory power) and are, above all, capable of handling much larger datasets. Given this, econometricians need to understand what the two cultures are, what differentiates them and, above all, what they have in common in order to draw on tools developed by the statistical learning community with a view to incorporating them into econometric models.
    • ISSN:
      0336-1454
    • الرقم المعرف:
      10.24187/ecostat.2018.505d.1970
    • Rights:
      Downloading and printing allowed only for personal use. For general information see "Copyright and Other Restrictions" at http://www.persee.fr/web/support/legal-aspects
    • الرقم المعرف:
      edsper.estat.0336.1454.2018.num.505.1.10873