Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A variance-expected compliance model for structural optimization

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Ivorra, Benjamin; Carrasco, Miguel; Manuel Ramos, Angel
  • نوع التسجيلة:
    Electronic Resource
  • الدخول الالكتروني :
    https://hdl.handle.net/20.500.14352/42277
    http://www.springerlink.com/content/225485288q6901nn/fulltext.pdf
    http://www.springerlink.com
    The authors want to thank Felipe Alvarez from "Universidad de Chile" for his valuable help. This work was carried out
  • معلومة اضافية
    • Publisher Information:
      Springer/plenum publishers 2023-06-20T00:15:18Z 2023-06-20T00:15:18Z 2012
    • نبذة مختصرة :
      The goal of this paper is to find robust structures for a given main load and its perturbations. In the first part, we show the mathematical formulation of an original variance-expected compliance model used for structural optimization. In the second part, we study the interest of this model on two 3D benchmark test cases and compare the obtained results with those given by an expected compliance model.
      CMM; Spanish "Ministry of Education and Science"[MTM2008-04621/MTM]; research group MOMAT[910480]; Banco
      Depto. de Análisis Matemático y Matemática Aplicada
      Fac. de Ciencias Matemáticas
      TRUE
      pub
    • الموضوع:
    • Note:
      application/pdf
      0022-3239
      English
    • Other Numbers:
      ESRCM oai:docta.ucm.es:20.500.14352/42277
      Dorn, W., Gomory, R., Greenberg, M.: Automatic design of optimal structures. J. Mech. 3, 25–52(1964) Ben-Tal, A., Nemirovski, A.: Robust truss topology design via semidefinite programming. SIAM J.Optim. 7(4), 991–1016 (1997) Achtziger, W., Bendsøe, M., Ben-Tal, A., Zowe, J.: Equivalent displacement based formulations for maximum strength truss topology design. Impact Comput. Sci. Eng. 4(4), 315–345 (1992) Achtziger,W.: Topology optimization of discrete structures: an introduction in view of computational and nonsmooth aspects. In: Rozvany, G.I.N. (ed.) Topology Optimization in Structural Mechanics,pp. 57–100. Springer, Vienna (1997) Achtziger, W.: Multiple-load truss topology and sizing optimization: some properties of minimax compliance. J. Optim. Theory Appl. 98(2), 255–280 (1998) Alvarez, F., Carrasco, M.: Minimization of the expected compliance as an alternative approach to multiload truss optimization. Struct. Multidiscip. Optim. 29(6), 470–476 (2005) Ben-Tal, A., Bendsøe, M.P.: A new method for optimal truss topology design. SIAM J. Optim. 3(2),322–358 (1993) Ben-Tal, A., Zibulevsky, M.: Penalty/barrier multiplier methods for convex programming problems.SIAM J. Optim. 7(2), 347–366 (1997) Jarre, F., Koˇcvara, M., Zowe, J.: Optimal truss design by interior-point methods. SIAM J. Optim. 8(4),1084–1107 (1998)Ivorra, B., Ramos, A.M., Mohammadi, B.: Semideterministic global optimization method: Application to a control problem of the burgers equation. J. Optim. Theory Appl. 135(3), 549–561 (2007) Bendsøe, M.P., Sigmund, O.: Topology Optimization. Theory, Methods and Applications. Springer,Berlin (2003) Eckhardt, H.: Kinematic Design of Machines and Mechanisms. McGraw-Hill, New York (1998) Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997) Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4),575–601 (1992) Zhang, Y.: Solving large-scale linear programs by int
      0022-3239
      10.1007/s10957-011-9874-7
      1413949821
    • Contributing Source:
      REPOSITORIO E-PRINTS UNIVERSIDAD COMPLU
      From OAIster®, provided by the OCLC Cooperative.
    • الرقم المعرف:
      edsoai.on1413949821
HoldingsOnline