Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Last deglacial abrupt climate changes caused by meltwater pulses in the Labrador Sea
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- المؤلفون: You, Defang; Stein, Ruediger; Fahl, Kirsten; Williams, Maricel C.; Schmidt, Daniela N.; Mccave, Ian Nicholas; Barker, Stephen; Schefuß, Enno; Niu, Lu; Kuhn, Gerhard; Niessen, Frank
- المصدر:
Communications Earth & Environment (2662-4435) (Springer Science and Business Media LLC), 2023-03-17 , Vol. 4 , N. 1 , P. 81 (12p.)
- نوع التسجيلة:
Electronic Resource
- الدخول الالكتروني :
https://archimer.ifremer.fr/doc/00828/94007/100852.pdf
https://archimer.ifremer.fr/doc/00828/94007/100853.pdf
https://archimer.ifremer.fr/doc/00828/94007/100854.pdf
https://archimer.ifremer.fr/doc/00828/94007/
- معلومة اضافية
- Publisher Information:
Springer Science and Business Media LLC 2023-03-17
- نبذة مختصرة :
Freshwater perturbations are often thought to be associated with abrupt climate changes during the last deglaciation, while many uncertainties remain regarding the exact timing, pathway, mechanism, and influence of meltwater release. Here, we present very well-dated and high-resolution records from the eastern Labrador Sea representing the last 19.000 years, which demonstrate abrupt changes in sea surface characteristics. Four millennial-scale meltwater events have been identified between the last 14.000 and 8.200 years based on independent biomarker proxies and X-ray fluorescence scanning data. These events are characterized by increased sea ice formation and decreased sea surface temperatures which might have occurred within a few decades. We propose these abrupt changes were triggered by meltwater pulsing into the Labrador Sea periodically, resulting from collapse of the Laurentide-Greenland Ice Sheets caused by (sub-)surface ocean warming in the Labrador Sea. Our findings provide more precise information about impact of freshwater forcing on abrupt climate changes, which may help to improve simulations for past and future changes in ocean circulation and climate.
- الموضوع:
- الرقم المعرف:
10.1038.s43247-023-00743-3
- Availability:
Open access content. Open access content
info:eu-repo/semantics/openAccess
restricted use
- Note:
application/pdf
English
- Other Numbers:
FRIFR oai:archimer.ifremer.fr:94007
DOI:10.1038/s43247-023-00743-3
1373800054
- Contributing Source:
IFREMER
From OAIster®, provided by the OCLC Cooperative.
- الرقم المعرف:
edsoai.on1373800054
HoldingsOnline
No Comments.