Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Publisher Information:
      eScholarship, University of California 2021-05-01
    • نبذة مختصرة :
      Vegetation composition shifts, and in particular, shrub expansion across the Arctic tundra are some of the most important and widely observed responses of high-latitude ecosystems to rapid climate warming. These changes in vegetation potentially alter ecosystem carbon balances by affecting a complex set of soil-plant-atmosphere interactions. In this review, we synthesize the literature on (a) observed shrub expansion, (b) key climatic and environmental controls and mechanisms that affect shrub expansion, (c) impacts of shrub expansion on ecosystem carbon balance, and (d) research gaps and future directions to improve process representations in land models. A broad range of evidence, including in-situ observations, warming experiments, and remotely sensed vegetation indices have shown increases in growth and abundance of woody plants, particularly tall deciduous shrubs, and advancing shrublines across the circumpolar Arctic. This recent shrub expansion is affected by several interacting factors including climate warming, accelerated nutrient cycling, changing disturbance regimes, and local variation in topography and hydrology. Under warmer conditions, tall deciduous shrubs can be more competitive than other plant functional types in tundra ecosystems because of their taller maximum canopy heights and often dense canopy structure. Competitive abilities of tall deciduous shrubs vs herbaceous plants are also controlled by variation in traits that affect carbon and nutrient investments and retention strategies in leaves, stems, and roots. Overall, shrub expansion may affect tundra carbon balances by enhancing ecosystem carbon uptake and altering ecosystem respiration, and through complex feedback mechanisms that affect snowpack dynamics, permafrost degradation, surface energy balance, and litter inputs. Observed and projected tall deciduous shrub expansion and the subsequent effects on surface energy and carbon balances may alter feedbacks to the climate system. Land mo
    • الموضوع:
    • Note:
      application/pdf
      Environmental Research Letters vol 16, iss 5, 053001-053001 1748-9318
    • Other Numbers:
      CDLER oai:escholarship.org:ark:/13030/qt9m732117
      qt9m732117
      https://escholarship.org/uc/item/9m732117
      https://escholarship.org/
      1298736203
    • Contributing Source:
      UC MASS DIGITIZATION
      From OAIster®, provided by the OCLC Cooperative.
    • الرقم المعرف:
      edsoai.on1298736203
HoldingsOnline