Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Maximum likelihood estimation in Gaussian models under total positivity
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- معلومة اضافية
- Publisher Information:
Institute of Mathematical Statistics 2021-10-27T20:04:56Z 2021-10-27T20:04:56Z 2019 2019-07-09T18:10:20Z
- نبذة مختصرة :
© 2019 Institute of Mathematical Statistics. We analyze the problem of maximum likelihood estimation for Gaussian distributions that are multivariate totally positive of order two (MTP2). By exploiting connections to phylogenetics and single-linkage clustering, we give a simple proof that the maximum likelihood estimator (MLE) for such distributions exists based on n = 2 observations, irrespective of the underlying dimension. Slawski and Hein [Linear Algebra Appl. 473 (2015) 145-179], who first proved this result, also provided empirical evidence showing that the MTP2 constraint serves as an implicit regularizer and leads to sparsity in the estimated inverse covariance matrix, determining what we name the ML graph. We show that we can find an upper bound for the ML graph by adding edges corresponding to correlations in excess of those explained by the maximum weight spanning forest of the correlation matrix. Moreover, we provide globally convergent coordinate descent algorithms for calculating the MLE under the MTP2 constraint which are structurally similar to iterative proportional scaling. We conclude the paper with a discussion of signed MTP2 distributions.
- الموضوع:
- Note:
application/pdf
English
- Other Numbers:
MYG oai:dspace.mit.edu:1721.1/134422
1286404938
- Contributing Source:
MASSACHUSETTS INST OF TECHNOL LIBRS
From OAIster®, provided by the OCLC Cooperative.
- الرقم المعرف:
edsoai.on1286404938
HoldingsOnline
No Comments.