Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • نوع التسجيلة:
    Electronic Resource
  • الدخول الالكتروني :
    http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-70335
    Global Change Biology, 1354-1013, 2013, 19:5, s. 1470-1481
  • معلومة اضافية
    • Publisher Information:
      Umeå universitet, Institutionen för ekologi, miljö och geovetenskap 2013
    • Added Details:
      Lenoir, Jonathan
      Graae, Bente Jessen
      Aarrestad, Per Arild
      Alsos, Inger Greve
      Armbruster, W. Scott
      Austrheim, Gunnar
      Bergendorff, Claes
      Birks, H. John B.
      Brathen, Kari Anne
      Brunet, Jorg
      Bruun, Hans Henrik
      Dahlberg, Carl Johan
      Decocq, Guillaume
      Diekmann, Martin
      Dynesius, Mats
      Ejrnaes, Rasmus
      Grytnes, John-Arvid
      Hylander, Kristoffer
      Klanderud, Kari
      Luoto, Miska
      Milbau, Ann
      Moora, Mari
      Nygaard, Bettina
      Odland, Arvid
      Ravolainen, Virve Tuulia
      Reinhardt, Stefanie
      Sandvik, Sylvi Marlen
      Schei, Fride Hoistad
      Speed, James David Mervyn
      Tveraabak, Liv Unn
      Vandvik, Vigdis
      Velle, Liv Guri
      Virtanen, Risto
      Zobel, Martin
      Svenning, Jens-Christian
    • نبذة مختصرة :
      Recent studies from mountainous areas of small spatial extent (<2500km2) suggest that fine-grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate-change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000-m2 units (community-inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1-km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1-km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100-km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 4672% of variation in LmT and 9296% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km2 units peaked at 6065 degrees N and increased with terrain roughness, averaging 1.97 degrees C (SD=0.84 degrees C) and 2.68 degrees C (SD=1.26 degrees C) within the flattest and roughest units respectively. Complex interactions between topography-related variables and latitude explained 35% of variation in growing-season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing-season CiT within 100-km2 units was, on average, 1.8 times greater (0.32 degrees Ckm1) than spatial turnover in growing-season GiT (0.18 degrees
    • الموضوع:
    • الرقم المعرف:
      10.1111.gcb.12129
    • Note:
      English
    • Other Numbers:
      UPE oai:DiVA.org:umu-70335
      doi:10.1111/gcb.12129
      ISI:000317284700012
      Scopus 2-s2.0-84875833674
      1233989855
    • Contributing Source:
      UPPSALA UNIV LIBR
      From OAIster®, provided by the OCLC Cooperative.
    • الرقم المعرف:
      edsoai.on1233989855
HoldingsOnline