Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Planetary Seismology using Single-Station and Small-Aperture Arrays: Implications for Mars and Ocean Worlds

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Marusiak, Angela Giuliano
  • نوع التسجيلة:
    Electronic Resource
  • الدخول الالكتروني :
    http://hdl.handle.net/1903/26478
  • معلومة اضافية
    • Publisher Information:
      University of Maryland (College Park, Md.) 2020
    • Added Details:
      Schmerr, Nicholas C
    • نبذة مختصرة :
      Studying geophysical station deployment on Earth is essential preparation for future geophysical experiments elsewhere in the solar system. Here, I investigated how single-station seismometers and small-aperture seismic arrays in analog settings can quantify instrument capabilities, develop methodologies to detect and locate seismicity, and constrain internal structure. First, I used a single-station seismometer in Germany to study how the NASA InSight mission could constrain core depth. I showed that InSight could recover the Martian core within ±30 km if ≥ 3 events are located within an epicentral distance uncertainty of < ±1 degree. Increasing the number of detected events reduces core depth uncertainty, and higher signal-to-noise events will not affect core depth uncertainty or recovery rate. Next, I used environmental analogs in Earth's cryosphere to quantify how seismometer placement on a mock-lander would affect instrument performance and seismic science results for a future surface mission to an icy ocean world. If mock-lander instruments were unprotected from the wind, noise levels were 50 dB higher than those on the ground. However, once seismometers were shielded via burial, noise performances were similar to the ground-coupled seismometers, although spacecraft resonances were found at frequencies ~100 Hz. For icy ocean worlds lacking atmospheres, I showed that deck-mounted flight-candidate seismometers recorded ground motion comparably to surface-deployed instrumentation, with responses similar to terrestrial seismometers at frequencies > 0.1 Hz. Finally, I investigated seismicity detection capabilities of single-station and small-aperture seismic arrays. Small-aperture arrays were more effective at distinguishing low-frequency seismic events from noise and had fewer false positive events than a single-station. The Greenland site detected a higher percentage of teleseismic and regional tectonic events while the Gulkana Glacier, Alaska site observed more
    • الموضوع:
    • Availability:
      Open access content. Open access content
    • Note:
      application/pdf
      application/octet-stream
      application/octet-stream
      audio/x-wav
      audio/x-wav
      English
    • Other Numbers:
      UMC oai:drum.lib.umd.edu:1903/26478
      https://doi.org/10.13016/jrd0-dofk
      1201512034
    • Contributing Source:
      UNIV OF MARYLAND, COL PARK
      From OAIster®, provided by the OCLC Cooperative.
    • الرقم المعرف:
      edsoai.on1201512034
HoldingsOnline