Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Constrained nonparametric estimation of input distance function

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • المؤلفون: Sun, Kai
  • نوع التسجيلة:
    Electronic Resource
  • الدخول الالكتروني :
    https://doi.org/10.1007/s11123-013-0372-9
    https://publications.aston.ac.uk/id/eprint/25171/
    https://doi.org/10.1007/s11123-013-0372-9
    https://publications.aston.ac.uk/id/eprint/25171
  • معلومة اضافية
    • Publisher Information:
      2015-02-01
    • نبذة مختصرة :
      This paper proposes a constrained nonparametric method of estimating an input distance function. A regression function is estimated via kernel methods without functional form assumptions. To guarantee that the estimated input distance function satisfies its properties, monotonicity constraints are imposed on the regression surface via the constraint weighted bootstrapping method borrowed from statistics literature. The first, second, and cross partial analytical derivatives of the estimated input distance function are derived, and thus the elasticities measuring input substitutability can be computed from them. The method is then applied to a cross-section of 3,249 Norwegian timber producers.
    • الموضوع:
    • Availability:
      Open access content. Open access content
    • Note:
      application/pdf
    • Other Numbers:
      AS$ oai:publications.aston.ac.uk:25171
      https://publications.aston.ac.uk/id/eprint/25171/1/Constrained_nonparametric_estimation_of_input_distance_function.pdf
      Sun, Kai (2015). Constrained nonparametric estimation of input distance function. Journal of Productivity Analysis, 43 (1), pp. 85-97.
      1110511725
    • Contributing Source:
      ASTON UNIV
      From OAIster®, provided by the OCLC Cooperative.
    • الرقم المعرف:
      edsoai.on1110511725
HoldingsOnline