Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Fabrication of Ultra-High-Performance PVDF-HFP Air Filters by Electrospinning

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      MDPI AG, 2023.
    • الموضوع:
      2023
    • Collection:
      LCC:Chemicals: Manufacture, use, etc.
      LCC:Textile bleaching, dyeing, printing, etc.
      LCC:Biology (General)
      LCC:Physics
    • نبذة مختصرة :
      This research aims to fabricate hydrophobic electrospun air filters with ultra-high performance against virions. In order to achieve this goal, constant basis weight electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) with low-bead, high-bead, and ultra-high-bead fibre structures were used to fabricate single and multilayer filters by controlling the Dimethylformamide (DMF)-to-acetone ratio of the solvent. The water contact angle of the fabricated layers ranged from 131° for low-bead structures to 135° for ultra-high-bead structures, indicating their overall high hydrophobicity. The size-resolved filtering efficiency and pressure drop tests on the fabricated filters showed that low-bead structure for both single and multilayer filters and high-bead structure for single-layer filters enhance the quality factor remarkably. The results showed that the single-layer ultra-high-bead structure air filters had a filtering efficiency of 99.33%, superior to N95 air filters (96.54%) and comparable to double N95 filters (99.86%). However, the electrospun air filter showed a pressure drop of 169.3 Pa and a quality factor of 27.6×10−3 Pa−1compared to a pressure drop of 388 Pa and quality factor of 16.9×10−3 Pa−1 for double N95 air filters. Therefore, it has a high potential to be used as the filtration media in hospitals, long-term care centers, and masks to provide superior protection against virions for healthcare providers and patients.
    • File Description:
      electronic resource
    • ISSN:
      2079-6439
    • Relation:
      https://www.mdpi.com/2079-6439/11/8/71; https://doaj.org/toc/2079-6439
    • الرقم المعرف:
      10.3390/fib11080071
    • الرقم المعرف:
      edsdoj.fdc111ee8b42458dab1c6dae209319