نبذة مختصرة : The A* algorithm is widely used in mobile robot path planning; however, it faces challenges such as unsmooth planned paths, redundant nodes, and extensive search areas. This paper proposes a hybrid algorithm combining an improved A* algorithm with the Dynamic Window Approach. By quantifying grid obstacle data to extract environmental information and employing a grid-based environmental modeling method, the proposed approach enhances path smoothness at turns using second-order Bezier curve smoothing. It improves the heuristic function and child node selection process, applying these advancements in experimental path planning scenarios. A simulated 2D map was constructed using point cloud scanning in RViz to validate the hybrid algorithm through simulations and real-world outdoor tests. Experimental results demonstrate that, compared to the A* and DWA algorithms, the improved hybrid algorithm enhances search efficiency by 10.93%, reduces search node count by 32.26%, decreases the number of turning points by 36.36% and the value of turning angle by 34.83%, shortens the total path length by 22.05%, and improves overall path smoothness. Simulations and field tests confirm that the proposed hybrid algorithm is more stable, significantly reduces collision probability, and demonstrates its applicability for mobile robot localization and navigation in real-world environments.
No Comments.