نبذة مختصرة : Abstract Background: Sea anemones are well known to contain multiple peptide toxins. However, of more than 1100 species of sea anemones distributed worldwide, only a little over 50 have been studied for peptide toxins. Therefore, innumerable unique and novel peptide toxins remain to be discovered in unstudied sea anemones. Methods: Isolation of peptide toxins in the sea anemone Heteractis aurora was attempted by gel filtration and reverse-phase high performance liquid chromatography, using the toxicity to crabs as an index. The amino acid sequences of the isolated four toxins (Hau I-IV) and their precursors were determined using a combination of protein sequencing and cDNA cloning. Results: Hau I and IV were potently lethal to crabs, whereas Hau II and III were only paralytic. The precursor proteins of the four toxins were commonly composed of a signal peptide, a propart, and the remaining region including a mature peptide. Interestingly, four and two copies of the mature peptide were present in the precursor proteins of Hau II and III, respectively. Homology searches revealed that Hau I (30 amino acid residues) is a novel peptide toxin, although it has the same cysteine pattern CXXC-C-C as the boundless β-hairpin (BBH) family. Hau II (27 amino acid residues) and III (28 amino acid residues) were homologous with the BBH family, whereas Hau IV (49 amino acid residues) was a new member of the well-known type 1 sodium channel toxin family. Conclusion: This study showed that a novel class of toxin (Hau I), two BBH family toxins (Hau II and III), and a type 1 sodium channel toxin (Hau IV) are present in the toxin of the sea anemone H. aurora.
No Comments.