Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Representing Uncertainty in Property Valuation Through a Bayesian Deep Learning Approach

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Sciendo, 2020.
    • الموضوع:
      2020
    • نبذة مختصرة :
      Although deep learning-based valuation models are spreading throughout the real estate industry following the artificial intelligence boom, property owners and investors continue to doubt the accuracy of the results. In this study, we specify a neural network for predicting house prices. We suggest a standard feed-forward network with two hidden layers, and show that it is sufficiently reasonable to apply its prediction to real-world projects such as property valuation. In addition, we propose a Bayesian neural network for describing uncertainty in house price predictions while providing a means to quantify uncertainty for each prediction. We choose Gangnam-gu, Seoul for the analysis, and predict house prices in the area using both networks. Although the Bayesian neural network did not perform better than the conventional network, it could provide a tool to measure the uncertainty inherent in predicted prices. The findings of this study show that a Bayesian approach can model uncertainty in property valuation, thereby promoting the adoption of deep learning tools in the real estate industry.
    • File Description:
      electronic resource
    • ISSN:
      2300-5289
    • Relation:
      https://doaj.org/toc/2300-5289
    • الرقم المعرف:
      10.1515/remav-2020-0028
    • الرقم المعرف:
      edsdoj.b091b7c319de4de6bbc4c391f6965b9f