نبذة مختصرة : Summary: Determining the protection an individual has to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VoCs) is crucial for future immune surveillance, vaccine development, and understanding of the changing immune response. We devised an informative assay to current ELISA-based serology using multiplexed, baited, targeted proteomics for direct detection of multiple proteins in the SARS-CoV-2 anti-spike antibody immunocomplex. Serum from individuals collected after infection or first- and second-dose vaccination demonstrates this approach and shows concordance with existing serology and neutralization. Our assays show altered responses of both immunoglobulins and complement to the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.1) VoCs and a reduced response to Omicron (B1.1.1529). We were able to identify individuals who had prior infection, and observed that C1q is closely associated with IgG1 (r > 0.82) and may better reflect neutralization to VoCs. Analyzing additional immunoproteins beyond immunoglobulin (Ig) G, provides important information about our understanding of the response to infection and vaccination. Motivation: Assays for measuring serum antibody responses are typically limited to measurement of a total or single immunoglobulin isotype. The antibody response is far more complex, with multiple immunoglobulin classes, isotypes, and complement factors involved. This is a potential wealth of information that is typically understudied and missed by existing tests. The global COVID-19 pandemic has highlighted the need to understand better the immune response in respect to vaccine development and emerging new severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants. Using the ability of tandem mass spectrometry to multiplex and directly and accurately measure the antibody complex, we devised an alternative assay to capture this valuable information.
No Comments.