Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Ethylene electrosynthesis from low-concentrated acetylene via concave-surface enriched reactant and improved mass transfer

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Nature Portfolio, 2024.
    • الموضوع:
      2024
    • Collection:
      LCC:Science
    • نبذة مختصرة :
      Abstract Electrocatalytic semihydrogenation of acetylene (C2H2) provides a facile and petroleum-independent strategy for ethylene (C2H4) production. However, the reliance on the preseparation and concentration of raw coal-derived C2H2 hinders its economic potential. Here, a concave surface is predicted to be beneficial for enriching C2H2 and optimizing its mass transfer kinetics, thus leading to a high partial pressure of C2H2 around active sites for the direct conversion of raw coal-derived C2H2. Then, a porous concave carbon-supported Cu nanoparticle (Cu-PCC) electrode is designed to enrich the C2H2 gas around the Cu sites. As a result, the as-prepared electrode enables a 91.7% C2H4 Faradaic efficiency and a 56.31% C2H2 single-pass conversion under a simulated raw coal-derived C2H2 atmosphere (~15%) at a partial current density of 0.42 A cm−2, greatly outperforming its counterpart without concave surface supports. The strengthened intermolecular π conjugation caused by the increased C2H2 coverage is revealed to result in the delocalization of π electrons in C2H2, consequently promoting C2H2 activation, suppressing hydrogen evolution competition and enhancing C2H4 selectivity.
    • File Description:
      electronic resource
    • ISSN:
      2041-1723
    • Relation:
      https://doaj.org/toc/2041-1723
    • الرقم المعرف:
      10.1038/s41467-024-50335-8
    • الرقم المعرف:
      edsdoj.82bf679622c3478b9b0cd13651857c2c