Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Texture and trace element characteristics of quartz in the Dongyuan porphyry W deposit, eastern China

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Elsevier, 2023.
    • الموضوع:
      2023
    • Collection:
      LCC:Geology
    • نبذة مختصرة :
      Most W mineralization in the world is genetically related with highly fractionated granites, but little is known about ore-forming fluid evolution of W mineralization associated with weakly fractionated granites. To reveal the ore-forming fluid evolution of W mineralization related to the weakly fractionated granites, a combined study of field and petrographic observations, mineralogical, morphological, and in-situ geochemical data of different-type quartz from Dongyuan porphyry W deposit in the world-class Jiangnan W belt, China, was carried out. The petrographic observation and cathodoluminescence (CL) imaging revealed the quartz in the Dongyuan W deposit can be divided into hydrothermal quartz (Qz1 with core-edge structure, and Qz2 with oscillating zone) in the mineralized alteration zone, and magmatic quartz (Qz3 with inherited core) in granodiorite porphyry. The LA-ICP-MS results of the Dongyuan quartz samples show that Al may enter the quartz structure with trivalent Al3+ instead of Si4+, monovalent alkali metals and bivalent (Ge2+, Sr2+) cations is mainly of charge compensators in quartz, while Ti possibly is in the form of microinclusions of titanium-containing minerals in quartz. The integrated interpretation of the trace element compositions (e.g., Al and Ti contents, Al/Na ratios) and CL texture of quartz indicate high temperature (>400 °C) and uniform Al-rich acidic fluid are conducive to W precipitation of the Dongyuan deposit. Furthermore, trace element compositions (e.g., Ge, Al) and micro-textures of quartz have the potential for distinguishing magmatic and hydrothermal quartz in the Dongyuan W deposit.
    • File Description:
      electronic resource
    • ISSN:
      2451-912X
    • Relation:
      http://www.sciencedirect.com/science/article/pii/S2451912X23000405; https://doaj.org/toc/2451-912X
    • الرقم المعرف:
      10.1016/j.sesci.2023.11.001
    • الرقم المعرف:
      edsdoj.7adb7abb7e0d4f2dba742ccb696c4ed8