Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Modulating competitive adsorption of hybrid self-assembled molecules for efficient wide-bandgap perovskite solar cells and tandems

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Nature Portfolio, 2025.
    • الموضوع:
      2025
    • Collection:
      LCC:Science
    • نبذة مختصرة :
      Abstract The employment of self-assembled molecular hybrid could improve buried interface in perovskite solar cells (PSCs). However, the interplay among hybrid self-assembled monolayers (SAMs) during the deposition process has not been well-studied. Herein, we study the interaction between co-adsorbents and commonly used SAM material, [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) for wide-bandgap (WBG) PSCs. It is found that the co-adsorbent, 6-aminohexane-1-sulfonic acid (SA) tends to fill the uncovered sites without interference with Me-4PACz, ensuring the formation of a dense hole selective layer. Moreover, the use of SA/Me-4PACz mixed SAMs could effectively reduce the interfacial non-radiative recombination loss, optimize the energy alignment at the buried interface and regulate the crystallization of WBG perovskite. As a result, the 1.77 eV WBG PSCs deliver a power conversion efficiency (PCE) of 20.67% (20.21% certified) and an impressive open-circuit voltage (V OC) of 1.332 V (1.313 V certified). By combining with a 1.26 eV narrow-bandgap (NBG) PSC, we further fabricate 2-terminal all-perovskite tandem solar cells (TSCs) with a PCE of 28.94% (28.78% certified) for 0.087 cm2 and 23.92% for mini-module with an aperture area of 11.3 cm2.
    • File Description:
      electronic resource
    • ISSN:
      2041-1723
    • Relation:
      https://doaj.org/toc/2041-1723
    • الرقم المعرف:
      10.1038/s41467-025-58111-y
    • الرقم المعرف:
      edsdoj.6ac69dd1b0544974bf601373c9db9097