نبذة مختصرة : Abstract Background Long noncoding RNAs (lncRNAs) are implicated in the initiation and progression of diffuse large B-cell lymphoma (DLBCL). Small nucleolar RNA host gene 20 (SNHG20) has been recognized as a critical lncRNA in multiple human cancers. However, the role of SNHG20 and its underlying mechanism in DLBCL are still unclear. Methods The expression levels of SNHG20, c-MYC, β-catenin, and ubiquitin-specific peptidase 14 (USP14) were measured by reverse transcription-quantitative polymerase chain reaction (RT‒qPCR) and immunoblotting. Cell Counting Kit-8 (CCK-8), 5-Ethynyl-2′-deoxyuridine (EdU) incorporation, and flow cytometry assays were used to assess the proliferation and apoptosis of DLBCL cells. The transcriptional regulation of SNHG20 by c-MYC was confirmed by a luciferase reporter assay and RNA immunoprecipitation. The interaction between USP14 and β-catenin was demonstrated using coimmunoprecipitation. A subcutaneous xenograft model was constructed to determine the role of SNHG20 in vivo. Results In the present study, we found that SNHG20 expression was upregulated in DLBCL cell lines and tissues compared to their normal counterparts. SNHG20 knockdown prominently reduced the proliferation and induced the apoptosis of U2932 and OCI-LY3 cells. However, SNHG20 overexpression increased the proliferation and apoptosis resistance of DLBCL cells. Mechanistically, the expression of SNHG20 was positively regulated by c-MYC in DLBCL cells. C-MYC directly bound to the promoter of SNHG20 to activate its transcription. SNHG20 was expressed mainly in the cytosol in DLBCL cells. SNHG20 silencing did not impact USP14 expression but markedly decreased the level of β-catenin, the substrate of USP14, in DLBCL cells. USP14 overexpression increased the β-catenin level, and this increase was attenuated by SNHG20 knockdown. Treatment with the proteasome inhibitor MG132 abolished SNHG20 knockdown-induced β-catenin downregulation. Moreover, SNHG20 silencing reduced the half-life but increased the ubiquitination of β-catenin in DLBCL cells. SNHG20 knockdown weakened the interaction between both endogenous and exogenous USP14 and β-catenin. In turn, SNHG20 overexpression increased the c-MYC level, and this increase was attenuated by β-catenin knockdown. Importantly, β-catenin knockdown attenuated the SNHG20-mediated increase in DLBCL cell proliferation in vitro and tumour growth in vivo. Conclusions Taken together, our results suggested that c-MYC-activated SNHG20 accelerated the proliferation and increased the apoptosis resistance of DLBCL cells via USP14-mediated deubiquitination of β-catenin. The c-MYC/SNHG20 positive feedback loop may be a new target for anti-DLBCL treatment.
No Comments.