Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Generalized B\'{e}zier curves based on Bernstein-Stancu-Chlodowsky type operators

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Sociedade Brasileira de Matemática, 2022.
    • الموضوع:
      2022
    • Collection:
      LCC:Mathematics
    • نبذة مختصرة :
      In this paper, we use the blending functions of Bernstein-Stancu-Chlodowsky type operators with shifted knots for construction of modified Chlodowsky B\'{e}zier curves. We study the nature of degree elevation and degree reduction for B\'{e}zier Bernstein-Stancu-Chlodowsky functions with shifted knots for $t \in [\frac{\gamma}{n+\delta},\frac{n+\gamma}{n+\delta}]$. We also present a de Casteljau algorithm to compute Bernstein B\'{e}zier curves with shifted knots. The new curves have some properties similar to B\'{e}zier curves. Furthermore, some fundamental properties for Bernstein B\'{e}zier curves are discussed. Our generalizations show more flexibility in taking the value of $\gamma$ and $\delta$ and advantage in shape control of curves. The shape parameters give more convenience for the curve modelling.
    • File Description:
      electronic resource
    • ISSN:
      0037-8712
      2175-1188
    • Relation:
      https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/52003; https://doaj.org/toc/0037-8712; https://doaj.org/toc/2175-1188
    • الرقم المعرف:
      10.5269/bspm.52003
    • الرقم المعرف:
      edsdoj.19d3c1c1ce9496bb6a6cf5b402f94d3