Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Exploring the local field potential signal from the subthalamic nucleus for phase-targeted auditory stimulation in Parkinson's disease

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Elsevier, 2024.
    • الموضوع:
      2024
    • Collection:
      LCC:Neurosciences. Biological psychiatry. Neuropsychiatry
    • نبذة مختصرة :
      Background: Enhancing slow waves, the electrophysiological (EEG) manifestation of non-rapid eye movement (NREM) sleep, could potentially benefit patients with Parkinson's disease (PD) by improving sleep quality and slowing disease progression. Phase-targeted auditory stimulation (PTAS) is an approach to enhance slow waves, which are detected in real-time in the surface EEG signal. Objective: We aimed to test whether the local-field potential of the subthalamic nucleus (STN-LFP) can be used to detect frontal slow waves and assess the electrophysiological changes related to PTAS. Methods: We recruited patients diagnosed with PD and undergoing Percept™ PC neurostimulator (Medtronic) implantation for deep brain stimulation of STN (STN-DBS) in a two-step surgery. Patients underwent three full-night recordings, including one between-surgeries recording and two during rehabilitation, one with DBS+ (on) and one with DBS- (off). Surface EEG and STN-LFP signals from Percept PC were recorded simultaneously, and PTAS was applied during sleep in all three recording sessions. Results: Our results show that during NREM sleep, slow waves of the cortex and STN are time-locked. PTAS application resulted in power and coherence changes, which can be detected in STN-LFP. Conclusion: Our findings suggest the feasibility of implementing PTAS using solely STN-LFP signal for slow wave detection, thus without a need for an external EEG device alongside the implanted neurostimulator. Moreover, we propose options for more efficient STN-LFP signal preprocessing, including different referencing and filtering to enhance the reliability of cortical slow wave detection in STN-LFP recordings.
    • File Description:
      electronic resource
    • ISSN:
      1935-861X
      44474814
    • Relation:
      http://www.sciencedirect.com/science/article/pii/S1935861X2400113X; https://doaj.org/toc/1935-861X
    • الرقم المعرف:
      10.1016/j.brs.2024.06.007
    • الرقم المعرف:
      edsdoj.137e0ca2b1f44474814f34df2eb7c573