Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Oxytocin shortens spreading depolarization-induced periorbital allodynia

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      BMC, 2024.
    • الموضوع:
      2024
    • Collection:
      LCC:Medicine
    • نبذة مختصرة :
      Abstract Background Migraine is among the most prevalent and burdensome neurological disorders in the United States based on disability-adjusted life years. Cortical spreading depolarization (SD) is the most likely electrophysiological cause of migraine aura and may be linked to trigeminal nociception. We previously demonstrated, using a minimally invasive optogenetic approach of SD induction (opto-SD), that opto-SD triggers acute periorbital mechanical allodynia that is reversed by 5HT1B/1D receptor agonists, supporting SD-induced activation of migraine-relevant trigeminal pain pathways in mice. Recent data highlight hypothalamic neural circuits in migraine, and SD may activate hypothalamic neurons. Furthermore, neuroanatomical, electrophysiological, and behavioral data suggest a homeostatic analgesic function of hypothalamic neuropeptide hormone, oxytocin. We, therefore, examined the role of hypothalamic paraventricular nucleus (PVN) and oxytocinergic (OXT) signaling in opto-SD-induced trigeminal pain behavior. Methods We induced a single opto-SD in adult male and female Thy1-ChR2-YFP transgenic mice and quantified fos immunolabeling in the PVN and supraoptic nucleus (SON) compared with sham controls. Oxytocin expression was also measured in fos-positive neurons in the PVN. Periorbital mechanical allodynia was tested after treatment with selective OXT receptor antagonist L-368,899 (5 to 25 mg/kg i.p.) or vehicle at 1, 2, and 4 h after opto-SD or sham stimulation using von Frey monofilaments. Results Opto-SD significantly increased the number of fos immunoreactive cells in the PVN and SON as compared to sham stimulation (p
    • File Description:
      electronic resource
    • ISSN:
      1129-2377
    • Relation:
      https://doaj.org/toc/1129-2377
    • الرقم المعرف:
      10.1186/s10194-024-01855-7
    • الرقم المعرف:
      edsdoj.07705befc57744f9b1805340a5319971