Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Learned Deep Radiomics for Survival Analysis with Attention

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire des Sciences du Numérique de Nantes (LS2N); Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST); Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT); Nuclear Oncology (CRCINA-ÉQUIPE 13); Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA); Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre Hospitalier Universitaire de Nantes = Nantes University Hospital (CHU Nantes)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE); Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre Hospitalier Universitaire de Nantes = Nantes University Hospital (CHU Nantes)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE); Université de Nantes (UN)-Université de Nantes (UN); Policlinico S. Orsola-malpighi; Alma Mater Studiorum Università di Bologna = University of Bologna (UNIBO)-Servizio sanitario regionale Emilia-Romagna; Département de Médecine Nucléaire CHU Nantes; Centre Hospitalier Universitaire de Nantes = Nantes University Hospital (CHU Nantes); Santa Croce e Carle Hospital Cuneo, Italy; Département d'Hématologie CHU Nantes; Institute of Hematology and Medical Oncology "L.& A. Seràgnoli"; Département de Médecine Nucléaire ICO-Site Gauducheau, Saint-Herblain; Institut de Cancérologie de l'Ouest Angers/Nantes (UNICANCER/ICO); UNICANCER-UNICANCER; ANR-11-LABX-0018,IRON,Radiopharmaceutiques Innovants en Oncologie et Neurologie(2011)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2020
    • نبذة مختصرة :
      International audience ; In the context of multiple myeloma, patient diagnosis and treatment planning involve the medical analysis of full-body Positron Emission Tomography (PET) images. There has been a growing interest in linking quantitative measurements extracted from PET images (radiomics) with statistical methods for survival analysis. Following very recent advances, we propose an end-to-end deep learning model that learns relevant features and predicts survival given the image of a lesion. We show the importance of dealing with the variable scale of the lesions, and propose to this end an attention strategy deployed both on the spatial and channels dimensions, which improves the model performance and interpretability. We show results for the progression-free survival prediction of multiple myeloma (MM) patients on a clinical dataset coming from two prospective studies. We also discuss the difficulties of adapting deep learning for survival analysis given the complexity of the task, the small lesion sizes, and PET low SNR (signal to noise ratio).
    • الرقم المعرف:
      10.1007/978-3-030-59354-4_4
    • الدخول الالكتروني :
      https://hal.science/hal-03266299
      https://hal.science/hal-03266299v1/document
      https://hal.science/hal-03266299v1/file/PRIME_2020_Ludivine_Morvan.pdf
      https://doi.org/10.1007/978-3-030-59354-4_4
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.FFE2BB18