Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

F. Loray - Painlevé equations and isomonodromic deformations II (Part 1) ; F. Loray - Painlevé equations and isomonodromic deformations II (Part 1): Summer School 2019 - Foliations and algebraic geometry ; : École d’Été 2019 - Feuilletages et géométrie algébrique

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Institut de Recherche Mathématique de Rennes (IRMAR); Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro); Institut Fourier (IF ); Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ); ANR-11-LABX-0020,LEBESGUE,Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation(2011)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2019
    • Collection:
      Université de Rennes 1: Publications scientifiques (HAL)
    • نبذة مختصرة :
      In these lectures, we use the material of V. Heu and H. Reis' lectures to introduce and study Painlevé equations from the isomonodromic point of view. The main objects are rank 2 systems of linear differential equations on the Riemann sphere, or more generally, rank 2 connections. We will mainly focus on the case they have 4 simple poles, corresponding to the Painlevé VI equation, while other Painlevé equations correspond to confluence of these poles.First, we settle the Riemann-Hilbert correspondance which establish, roughly speaking, a one-to-one correspondance between connections and their monodromy data, once the poles are fixed. This correspondance is analytic, but not algebraic, very transcendental. Then isomonodromic deformations arise when we deform poles and connection without deforming the monodromy representation. Although the deformation is also transcendental in general, the coefficients satisfy a non linear polynomial differential equation, namely the Painlevé VI equation. By constructing an universal isomonodromic deformation, we explain how Malgrange proved the Painlevé property for isomonodromic deformation equations: solutions admit analytic continuation (with poles) outside of a fixed singular set. At the end, we can describe the Okamoto space of initial conditions for Painlevé VI equation, as well as its non linear monodromy. This can be used to prove the irreductibility of Painlevé VI equation, i.e. the absence of special first integrals, and therefore the transcendance of the general solution.
    • Relation:
      medihal-02273534; https://hal.science/medihal-02273534; https://hal.science/medihal-02273534/document; https://hal.science/medihal-02273534/file/loray_eem2019_19062019_hal.mp4
    • Rights:
      http://creativecommons.org/licenses/by-nc-nd/ ; info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.FF82A76E