Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Rekonstrukcija MRI slika mozga pomoću fastMRI biblioteke ; Reconstruction of brain MRI images using the fastMRI

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Galić, Irena; Habijan, Marija
    • بيانات النشر:
      Sveučilište Josipa Jurja Strossmayera u Osijeku. Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek. Zavod za programsko inženjerstvo. Katedra za vizualno računarstvo.
      Josip Juraj Strossmayer University of Osijek. Faculty of Electrical Engineering, Computer Science and Information Technology Osijek. Department of Software Engineering. Chair of Visual Computing.
    • الموضوع:
      2024
    • Collection:
      Croatian Digital Theses Repository (National and University Library in Zagreb)
    • نبذة مختصرة :
      sažetak (hrvatski): Ovaj se rad bavi rekonstrukcijom slika magnetske rezonance mozga primjenom metoda dubokog učenja implementiranih u fastMRI biblioteku. Magnetska rezonanca je ključna metoda za di- jagnostiku u medicini. Cilj ovog rada je istražti primjene tehnike prijenosa učenja na unaprijed istreniranim U-Net i End-to-End VarNet modelima kako bi se poboljšala kvaliteta rekonstrukcije slika uz poduzorkovane podatke. Korišteni su fastMRI i Calgary-Campinas skupovi podataka, a podatci su pripremljeni uz primjenu različitih maski poduzorkovanja ekvidistantnih, slučajnih ekvidistantnih i maski s Gaussovim šumom. Modeli su trenirani i evaluirani pomoću SSIM i PSNR metrika. Rezultati pokazuju da prijenosom učenja možemo poboljšati kvalitetu rekons- trukcije, pogotovo na End-to-End VarNet modelu. Kvaliteta rekonstrukcija još uvijek ne doseže razinu potrebnu za kliničku upotrebu. ; This paper addresses the reconstruction of magnetic resonance images using deep learning met- hods implemented in fastMRI library. Magnetic resonance is a key diagnostic tool in medicine. The aim of this paper is to research uses of transfer learning techniques on pre-trained U-Net and End-to- End VarNet models to improve the quality of image reconstruction from undersam- pled data. fastMRI and Calgary-Campinas datasets were used, and data was prepared using multiple undersampling masks: equispaced, random equispaced and masks with Gaussian no- ise. The models were trained and evaluated using SSIM and PSNR metrics. Results show that transfer learning can enhance reconstruction quality, particularly for the End-to-End VarNet model. However, the quality of reconstructions still falls short of the level required for clinical use.
    • File Description:
      application/pdf
    • Relation:
      https://zir.nsk.hr/islandora/object/etfos:5478; https://urn.nsk.hr/urn:nbn:hr:200:243073; https://repozitorij.unios.hr/islandora/object/etfos:5478; https://repozitorij.unios.hr/islandora/object/etfos:5478/datastream/PDF
    • الدخول الالكتروني :
      https://zir.nsk.hr/islandora/object/etfos:5478
      https://urn.nsk.hr/urn:nbn:hr:200:243073
      https://repozitorij.unios.hr/islandora/object/etfos:5478
      https://repozitorij.unios.hr/islandora/object/etfos:5478/datastream/PDF
    • Rights:
      http://rightsstatements.org/vocab/InC/1.0/ ; info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.FD363B16