Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

In silico PCR Verification and Simplex Real-Time PCR Detection of Methicillin-Resistant Staphylococcus aureus (MRSA) from East Coast Malaysian Clinical Isolates

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Walailak University
    • الموضوع:
      2013
    • Collection:
      Directory of Open Access Journals: DOAJ Articles
    • نبذة مختصرة :
      The aims of this study were to validate the primers developed for molecular-based detection and identification of Malaysian clinical isolates of methicilin-resistance Staphylococcus aureus (MRSA) using in-silico Polymerase Chain Reaction (PCR) and real-time PCR SYBR with Green I. Rapid molecular diagnostic and risk assessment of the MRSA are possible by real-time PCR SYBR Green I. However, validation of such primers for real-life samples is expensive and time consuming. Hence, development and verification of real-time PCR primers by in-silico PCR can be the first step in the selection of the most appropriate primers. Three species-specific markers were chosen targeting coa (staphylocoagulase), nuc (thermonuclease) and mecA (methicillin-resistance) and were specifically verified against 35 selected S. aureus strains by using in-silico PCR. For the actual laboratory verification, all of the 3 genes were detected with a single specific melting curve peak (Tm at 76.16 ± 0.8 °C, 78.50 ± 0.4 °C and 74.41 ± 0.6 °C for a coa, nuc and mecA respectively) in 32 bacterial strains including ATCC reference strains. Thus, there is no disagreement between both in-silico PCR and real-time PCR verification and validation of the primers designed for the detection and identification of MRSA in this study. The potential of using a bioinformatics approach (in-silico PCR) before selecting primer pairs for a given study may enable researchers to accept or reject the potential primer pairs for downstream experimental (in vitro) PCR without wasting any chemicals as well as related cost.
    • ISSN:
      1686-3933
      2228-835X
    • Relation:
      http://wjst.wu.ac.th/index.php/wjst/article/view/262; https://doaj.org/toc/1686-3933; https://doaj.org/toc/2228-835X; https://doaj.org/article/b3fc5cd8457d4cb39c6dabbf45df2583
    • الرقم المعرف:
      10.2004/wjst.v10i3.262
    • الدخول الالكتروني :
      https://doi.org/10.2004/wjst.v10i3.262
      https://doaj.org/article/b3fc5cd8457d4cb39c6dabbf45df2583
    • الرقم المعرف:
      edsbas.F9B20AD5