Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Reducing waste in manufacturing operations: bi-objective scheduling on a single-machine with coupled-tasks

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Décision et Information pour les Systèmes de Production (DISP); Université Lumière - Lyon 2 (UL2)-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA); Département Génie de l’environnement pour les organisations (FAYOL-ENSMSE); Institut Henri Fayol-Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE); École des Mines de Saint-Étienne (Mines Saint-Étienne MSE); Institut Mines-Télécom Paris (IMT); Institut Henri Fayol (FAYOL-ENSMSE); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT); Environnement, Ville, Société (EVS); École normale supérieure de Lyon (ENS de Lyon)-École des Mines de Saint-Étienne (Mines Saint-Étienne MSE); Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML); Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-École Nationale des Travaux Publics de l'État (ENTPE)-École nationale supérieure d'architecture de Lyon (ENSAL)-Centre National de la Recherche Scientifique (CNRS); Région Auvergne Rhône-Alpes; EcoSD network
    • بيانات النشر:
      HAL CCSD
      Taylor & Francis
    • الموضوع:
      2020
    • Collection:
      HAL Lyon 1 (University Claude Bernard Lyon 1)
    • نبذة مختصرة :
      International audience ; This study addresses a scheduling problem involving a single-machine with coupled-tasks and bi-objective optimisation considering simultaneously inventory and environmental waste. A Mixed Integer Linear Program representing the problem is first developed. Subsequently, a Genetic Algorithm (GA) is presented, followed by numerical experiments on multiple instances. Pareto fronts are determined using the ϵ-constraint and weighted sum methods, and a trade-off point is selected according to a distance criterion. Numerical experiments on both small and large instances show near-optimal results for small instances, and considerably reduced computing times for large ones when using the GA. The results show that a compromise can be found, with a decrease in setup-related waste up to 36% for an increase of inventory of 12%. This will help decision-makers to better consider the environmental aspect when designing schedules, as well as reduce their production environmental impact and waste-management costs.
    • Relation:
      emse-02360718; https://hal-emse.ccsd.cnrs.fr/emse-02360718; https://hal-emse.ccsd.cnrs.fr/emse-02360718/document; https://hal-emse.ccsd.cnrs.fr/emse-02360718/file/IJPR%20submission%20TPRS-2019-IJPR-0111.pdf
    • الرقم المعرف:
      10.1080/00207543.2019.1693653
    • الدخول الالكتروني :
      https://hal-emse.ccsd.cnrs.fr/emse-02360718
      https://hal-emse.ccsd.cnrs.fr/emse-02360718/document
      https://hal-emse.ccsd.cnrs.fr/emse-02360718/file/IJPR%20submission%20TPRS-2019-IJPR-0111.pdf
      https://doi.org/10.1080/00207543.2019.1693653
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.F997ABD4