Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Towards Improving Speech Emotion Recognition Using Synthetic Data Augmentation from Emotion Conversion

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Emobot; CentraleSupélec; Institut d'Électronique et des Technologies du numéRique (IETR); Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes); Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Nantes Université - pôle Sciences et technologie; Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2024
    • Collection:
      Université de Rennes 1: Publications scientifiques (HAL)
    • الموضوع:
    • نبذة مختصرة :
      International audience ; One of the main challenges in speech emotion recognition is the lack of large labelled datasets. The progress in speech synthesis allows us to generate reliable and realistic expressive speech. In this work, we propose using a state-of-the-art end-to-end speech emotion conversion model to generate new synthetic data for training speech emotion recognition models. We first evaluate the quality of the converted speech on new unseen datasets, which proves to be on par with the training data. Then, we study the effect of using the synthesized speech as data augmentation. We show that this approach improves the overall performance of emotion recognition models on two different datasets, IEMOCAP and RAVDESS, both in the cases of speaker dependent and independent emotion recognition using a fine-tuned wav2vec 2.0.
    • Relation:
      hal-04364976; https://hal.science/hal-04364976; https://hal.science/hal-04364976/document; https://hal.science/hal-04364976/file/ICASSP2024-1.pdf
    • الرقم المعرف:
      10.1109/icassp48485.2024.10445740
    • الدخول الالكتروني :
      https://doi.org/10.1109/icassp48485.2024.10445740
      https://hal.science/hal-04364976
      https://hal.science/hal-04364976/document
      https://hal.science/hal-04364976/file/ICASSP2024-1.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.F8C0B0AA