نبذة مختصرة : Quinine is a natural white crystalline cinchona alkaloid that belongs to the aryl amino alcohol group of drugs, and it has antipyretic (fever reducing), antimalarial, analgesic, anti-inflammatory properties and a bitter taste. Today, quinine is considered as the best antimalarial drug since it is chiefly used in the treatment of falciparum malaria resistant to other antimalarials. Quinine is preferred where the disease has become highly resistant to other antimalarial drugs [1]. Quinine has a low therapeutic index, and it is potentially toxic and causes several side effects including nausea, blurred vision, diarrhea, abdominal pain, headache, fever, renal failure and asthma [2]. Since quinine is widely used as a bittering agent in tonic type drinks, a sensitive and discriminatory system for the discovery of quinine is essential for human health. In this work, a modified bismuth-oxychloride (BiOCl) carbon paste electrode was prepared for the detection of quinine. BiOCl nanoparticles were synthesized by the chemical coprecipitation method. The electrochemical properties of quinine at this electrode were investigated by cyclic voltammetry (CV), square wave voltammetry (SWV), and differential pulse voltammetry (DPV). In addition, electrochemical impedance spectroscopy (EIS), inductively coupled plasma–optical emission spectrometry (ICP-OES), transmission and scanning electron microscopy (TEM and SEM) and X-ray diffraction (XRD) were used to characterize the synthesized materials. The prepared electrode showed better electrocatalytic response than the bare carbon paste electrode. After square wave voltammetry (SWV) optimization, the electrode showed a wide linear working range from 20 to 200 μM at pH 6 of Britton–Robinson buffer solution (BRBS) as the supporting electrolyte. The excellent selectivity of the proposed method, with good repeatability and reproducibility, strongly suggests a potential application of the method for the determination of quinine in pharmaceuticals. The practicality with good recoveries ...
No Comments.