نبذة مختصرة : Integrating Terrestrial and Non-Terrestrial Networks (NTNs) within Beyond-5G (B5G) and future 6G ecosystems represents a transformative advancement in achieving ubiquitous, resilient, and scalable communication services. NTNs, including Low Earth Orbit (LEO) satellites, Unmanned Aerial Vehicles (UAVs), and High Altitude Platform Systems (HAPS), extend traditional terrestrial networks by providing continuous connectivity in remote, underserved, and connection-critical scenarios such as disaster-hit regions and rural areas. This thesis deals with an end-to-end cloud-native framework that leverages cutting-edge technologies, including Multi-Access Edge Computing (MEC), Software Defined Networking (SDN), Network Function Virtualization (NFV), blockchain, and advanced AI/ML models, to enhance service availability, security, and Quality of Service (QoS) in 3D NTN environments. The research first explores the deployment of disaggregated Next-Generation Radio Access Networks (NGRANs) across terrestrial and non-terrestrial domains using a Kubernetes-based architecture. A Graph Neural Network (GNN) model is developed to monitor and manage these networks, detecting link failures and optimizing traffic routing paths between terrestrial and satellite components. The GNN model achieves an 85% accuracy in link failure detection and significantly reduces end-to-end delays in NTN deployments, highlighting the potential of AI-driven network management in enhancing overall network resilience. To address the challenge of dynamic resource management in NTNs, this thesis investigates the implementation of functional splits, such as F1 and E1 interfaces, between terrestrial control units (gNB-CU) and satellite-based distributed units (gNB-DU). The study employs Long Short-Term Memory (LSTM) neural networks to predict resource utilization, specifically CPU, memory, and bandwidth of satellite payloads. These predictive models enable proactive monitoring and resource allocation decisions, ensuring efficient use of limited computational ...
No Comments.