Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Automated segmentation of thick confocal microscopy 3D images for the measurement of white matter volumes in zebrafish brains

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire d'Informatique Gaspard-Monge (LIGM); École nationale des ponts et chaussées (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel; Transgénèse pour les Etudes Fonctionnelles sur les Organismes Modèles (TEFOR Paris-Saclay); Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE); Universidad del País Vasco Espainia / Euskal Herriko Unibertsitatea España = University of the Basque Country Spain = Université du pays basque Espagne (UPV / EHU); OPtimisation Imagerie et Santé (OPIS); Inria Saclay - Ile de France; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de vision numérique (CVN); Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-CentraleSupélec-Université Paris-Saclay; ANR-16-CE20-0002,Fish-RNAvax,Vaccins ARN éco-compatibles pour l'induction de réponses immunitaires protectrices chez le poisson d'élevage(2016)
    • بيانات النشر:
      CCSD
      De Gruyter
    • الموضوع:
      2020
    • نبذة مختصرة :
      International audience ; Tissue clearing methods have boosted the microscopic observations of thick samples such as wholemount mouse or zebrafish. Even with the best tissue clearing methods, specimens are not completely transparent and light attenuation increases with depth, reducing signal output and signal-to-noise ratio. In addition, since tissue clearing and microscopic acquisition techniques have become faster, automated image analysis is now an issue. In this context, mounting specimens at large scale often leads to imperfectly aligned or oriented samples, which makes relying on predefined, sample-independent parameters to correct signal attenuation impossible. Here, we propose a sample-dependent method for contrast correction. It relies on segmenting the sample, and estimating sample depth isosurfaces that serve as reference for the correction. We segment the brain white matter of zebrafish larvae. We show that this correction allows a better stitching of opposite sides of each larva, in order to image the entire larva with a high signal-to-noise ratio throughout. We also show that our proposed contrast correction method makes it possible to better recognize the deep structures of the brain by comparing manual vs. automated segmentations. This is expected to improve image observations and analyses in high-content methods where signal loss in the samples is significant.
    • الرقم المعرف:
      10.1515/mathm-2020-0100
    • الدخول الالكتروني :
      https://hal.science/hal-03144939
      https://hal.science/hal-03144939v1/document
      https://hal.science/hal-03144939v1/file/10.1515_mathm-2020-0100%20%281%29.pdf
      https://doi.org/10.1515/mathm-2020-0100
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.F78B601