Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Synthesis of Heart/Dumbbell-Like CuO Functional Nanostructures for the Development of Uric Acid Biosensor

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Linköpings universitet, Fysik och elektroteknik
      Linköpings universitet, Tekniska fakulteten
      Chinese Acad Sci, Peoples R China; Univ Sindh, Pakistan
      Univ Medial and Hlth Sci, Pakistan
      Univ Sindh, Pakistan
      Tsinghua Univ, Peoples R China
      Chinese Acad Sci, Peoples R China
      MDPI
    • الموضوع:
      2018
    • Collection:
      Linköping University Electronic Press (LiU E-Press)
    • نبذة مختصرة :
      It is always demanded to prepare a nanostructured material with prominent functional properties for the development of a new generation of devices. This study is focused on the synthesis of heart/dumbbell-like CuO nanostructures using a low-temperature aqueous chemical growth method with vitamin B-12 as a soft template and growth directing agent. CuO nanostructures are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. CuO nanostructures are heart/dumbbell like in shape, exhibit high crystalline quality as demonstrated by XRD, and have no impurity as confirmed by XPS. Apparently, CuO material seems to be porous in structure, which can easily carry large amount of enzyme molecules, thus enhanced performance is shown for the determination of uric acid. The working linear range of the biosensor is 0.001 mM to 10 mM with a detection limit of 0.0005 mM and a sensitivity of 61.88 mV/decade. The presented uric acid biosensor is highly stable, repeatable, and reproducible. The analytical practicality of the proposed uric acid biosensor is also monitored. The fabrication methodology is inexpensive, simple, and scalable, which ensures the capitalization of the developed uric acid biosensor for commercialization. Also, CuO material can be used for various applications such as solar cells, lithium ion batteries, and supercapacitors. ; Funding Agencies|National Natural Science Foundation of China; Research Fund for International Young Scientists [21550110195]; Chinese Academy of Sciences Presidents International Fellowship Initiative [2015PM010]
    • File Description:
      application/pdf
    • Relation:
      Materials, 1996-1944, 2018, 11:8; http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151804; PMID 30096763; ISI:000444112800115
    • الرقم المعرف:
      10.3390/ma11081378
    • الدخول الالكتروني :
      https://doi.org/10.3390/ma11081378
      http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151804
    • Rights:
      info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.F739B929