Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Receiver-Device-Independent Quantum Key Distribution

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Group of Applied Physics Geneva (GAP); Université de Genève = University of Geneva (UNIGE); Traitement optimal de l'information avec des dispositifs quantiques (QINFO); Inria Grenoble - Rhône-Alpes; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon-Université Grenoble Alpes (UGA)-Inria Lyon; Institut National de Recherche en Informatique et en Automatique (Inria); Institut de Physique Théorique - UMR CNRS 3681 (IPHT); Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)); Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA); European Project: 820405,QRANGE
    • بيانات النشر:
      HAL CCSD
      Verein
    • الموضوع:
      2022
    • Collection:
      HAL Lyon 1 (University Claude Bernard Lyon 1)
    • نبذة مختصرة :
      International audience ; We present protocols for quantum key distribution in a prepare-and-measure setup with an asymmetric level of trust. While the device of the sender (Alice) is partially characterized, the receiver's (Bob's) device is treated as a black-box. The security of the protocols is based on the assumption that Alice's prepared states have limited overlaps, but no explicit bound on the Hilbert space dimension is required. The protocols are immune to attacks on the receiver's device, such as blinding attacks. The users can establish a secret key while continuously monitoring the correct functioning of their devices through observed statistics. We report a proof-of-principle demonstration, involving mostly off-the-shelf equipment, as well as a high-efficiency superconducting nanowire detector. A positive key rate is demonstrated over a 4.8 km low-loss optical fiber with finite-key analysis. The prospects of implementing these protocols over longer distances is discussed.
    • Relation:
      info:eu-repo/semantics/altIdentifier/arxiv/2104.14574; info:eu-repo/grantAgreement//820405/EU/ Quantum Random Number Generators: cheaper, faster and more secure/QRANGE; hal-03251550; https://inria.hal.science/hal-03251550; https://inria.hal.science/hal-03251550v2/document; https://inria.hal.science/hal-03251550v2/file/Quantum%206,%20718%20%282022%29.pdf; ARXIV: 2104.14574
    • الرقم المعرف:
      10.22331/q-2022-05-24-718
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.F73171DD