Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Graph sampling with applications to estimating the number of pattern embeddings and the parameters of a statistical relational model

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Department of Computer Science - K.U.Leuven; Catholic University of Leuven = Katholieke Universiteit Leuven (KU Leuven); Jozef Stefan Institute Ljubljana (IJS); Machine Learning in Information Networks (MAGNET); Inria Lille - Nord Europe; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL); Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS); Irma Ravkic was partially supported by the KU Leuven Research Fund (OT/11/051). Martin Žnidaršič was partially supported by the KU Leuven Research Fund (OT/11/051) and the Slovenian Research Agency (P2-0103). Jesse Davis is partially supported by the KU Leuven Research Fund (OT/11/051, C14/17/070, C22/15/015, C32/17/036) and FWO-Vlaanderen (G.0356.12, SBO-150033).; European Project: 240186,EC:FP7:ERC,ERC-2009-StG,MIGRANT(2009)
    • بيانات النشر:
      HAL CCSD
      Springer
    • الموضوع:
      2018
    • Collection:
      Université de Lille 3 - Sciences Humaines et Sociales: HAL
    • نبذة مختصرة :
      International audience ; Counting the number of times a pattern occurs in a database is a fundamental data mining problem. It is a subroutine in a diverse set of tasks ranging from pattern mining to supervised learning and probabilistic model learning. While a pattern and a database can take many forms, this paper focuses on the case where both the pattern and the database are graphs (networks). Unfortunately , in general, the problem of counting graph occurrences is #P-complete. In contrast to earlier work, which focused on exact counting for simple (i.e., very short) patterns, we present a sampling approach for estimating the statistics of larger graph pattern occurrences. We perform an empirical evaluation on synthetic and real-world data that validates the proposed algorithm, illustrates its practical behavior and provides insight into the trade-off between its accuracy of estimation and computational efficiency.
    • Relation:
      info:eu-repo/grantAgreement/EC/FP7/240186/EU/Mining Graphs and Networks: a Theory-based approach/MIGRANT; hal-01725971; https://inria.hal.science/hal-01725971; https://inria.hal.science/hal-01725971/document; https://inria.hal.science/hal-01725971/file/ravkic-dami18.pdf
    • الرقم المعرف:
      10.1007/s10618-018-0553-2
    • الدخول الالكتروني :
      https://inria.hal.science/hal-01725971
      https://inria.hal.science/hal-01725971/document
      https://inria.hal.science/hal-01725971/file/ravkic-dami18.pdf
      https://doi.org/10.1007/s10618-018-0553-2
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.F546AFC3