Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Model Adaptation with Synthetic and Real Data for Semantic Dense Foggy Scene Understanding

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Ferrari, Vittorio; Hebert, Martial; Sminchisescu, Cristian; Weiss, Yair
    • بيانات النشر:
      Springer
    • الموضوع:
      2018
    • Collection:
      ETH Zürich Research Collection
    • نبذة مختصرة :
      This work addresses the problem of semantic scene understanding under dense fog. Although considerable progress has been made in semantic scene understanding, it is mainly related to clear-weather scenes. Extending recognition methods to adverse weather conditions such as fog is crucial for outdoor applications. In this paper, we propose a novel method, named Curriculum Model Adaptation (CMAda), which gradually adapts a semantic segmentation model from light synthetic fog to dense real fog in multiple steps, using both synthetic and real foggy data. In addition, we present three other main stand-alone contributions: 1) a novel method to add synthetic fog to real, clear-weather scenes using semantic input; 2) a new fog density estimator; 3) the Foggy Zurich dataset comprising 3808 real foggy images, with pixel-level semantic annotations for 16 images with dense fog. Our experiments show that 1) our fog simulation slightly outperforms a state-of-the-art competing simulation with respect to the task of semantic foggy scene understanding (SFSU); 2) CMAda improves the performance of state-of-the-art models for SFSU significantly by leveraging unlabeled real foggy data. The datasets and code will be made publicly available. ; ISSN:0302-9743 ; ISSN:1611-3349
    • File Description:
      application/application/pdf
    • ISBN:
      978-3-030-01260-1
      978-3-030-01261-8
      3-030-01260-3
      3-030-01261-1
    • Relation:
      info:eu-repo/semantics/altIdentifier/isbn/978-3-030-01260-1; info:eu-repo/semantics/altIdentifier/isbn/978-3-030-01261-8; http://hdl.handle.net/20.500.11850/305722; urn:isbn:978-3-030-01260-1; urn:isbn:978-3-030-01261-8
    • الرقم المعرف:
      10.3929/ethz-b-000305722
    • الدخول الالكتروني :
      https://hdl.handle.net/20.500.11850/305722
      https://doi.org/10.3929/ethz-b-000305722
    • Rights:
      info:eu-repo/semantics/openAccess ; http://rightsstatements.org/page/InC-NC/1.0/ ; In Copyright - Non-Commercial Use Permitted
    • الرقم المعرف:
      edsbas.F31640C7