Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Paper O. Bayesian Active Object Recognition via Gaussian Process Regression. Edited version of the paper: M. F. Huber, T. Dencker, M. Roschani, and J. Beyerer. Bayesian Active Object Recognition via Gaussian Process Regression. In Proceedings of the 15th International Conference on Information Fusion (Fusion), pages 1718-1725, Singapore, July 2012

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • بيانات النشر:
      Karlsruher Institut für Technologie
    • الموضوع:
      2015
    • Collection:
      KITopen (Karlsruhe Institute of Technologie)
    • نبذة مختصرة :
      This paper is concerned with a Bayesian approach of actively selecting camera parameters in order to recognize a given object from a finite set of object classes. Gaussian process regression is applied to learn the likelihood of image features given the object classes and camera parameters. In doing so, the object recognition task can be treated as Bayesian state estimation problem. For improving the recognition accuracy and speed, the selection of appropriate camera parameters is formulated as a sequential optimization problem. Mutual information is considered as optimization criterion, which aims at maximizing the information from camera observations or equivalently atminimizing the uncertainty of the state estimate.
    • Relation:
      https://publikationen.bibliothek.kit.edu/1000046076; http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:swb:90-460763
    • الدخول الالكتروني :
      https://publikationen.bibliothek.kit.edu/1000046076
      http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:swb:90-460763
    • Rights:
      info:eu-repo/semantics/openAccess
    • الرقم المعرف:
      edsbas.F0B8B2CF