Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Assessment of the current and emerging criteria for the histopathological classification of lung neuroendocrine tumours in the lungNENomics project

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Centre Léon Bérard Lyon; Institut de Cancérologie de Lorraine - Alexis Vautrin Nancy (UNICANCER/ICL); UNICANCER; Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy); Medical University of Graz = Medizinische Universität Graz; Hôpital Cochin AP-HP; Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP); Université Côte d'Azur (UniCA); Centre Régional de Lutte contre le Cancer François Baclesse Caen (UNICANCER/CRLC); Normandie Université (NU)-UNICANCER-Tumorothèque de Caen Basse-Normandie (TCBN); Hospices Civils de Lyon (HCL); Hôpital Marie-Lannelongue; Centre de Recherche en Cancérologie de Lyon (UNICANCER/CRCL); Centre Léon Bérard Lyon -Université Claude Bernard Lyon 1 (UCBL); Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS); Plateforme anatomopathologie recherche Lyon-Est; Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre Léon Bérard Lyon -Université Claude Bernard Lyon 1 (UCBL); Plateforme Ex-Vivo; Plateforme de gestion des échantillons biologiques (PGEB); Hôpital Edouard Herriot CHU - HCL; Institut Curie Paris; École Centrale de Lyon (ECL); Université de Lyon; Institut universitaire de France (IUF); Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
    • بيانات النشر:
      HAL CCSD
      European Society for Medical Oncology
    • الموضوع:
      2024
    • Collection:
      Hospices Civils de Lyon (HCL): HAL
    • نبذة مختصرة :
      International audience ; Background: Six thoracic pathologists reviewed 259 lung neuroendocrine tumours (LNETs) from the lungNENomics project, with 171 of them having associated survival data. This cohort presents a unique opportunity to assess the strengths and limitations of current World Health Organization (WHO) classification criteria and to evaluate the utility of emerging markers.Patients and methods: Patients were diagnosed based on the 2021 WHO criteria, with atypical carcinoids (ACs) defined by the presence of focal necrosis and/or 2-10 mitoses per 2 mm2. We investigated two markers of tumour proliferation: the Ki-67 index and phospho-histone H3 (PHH3) protein expression, quantified by pathologists and automatically via deep learning. Additionally, an unsupervised deep learning algorithm was trained to uncover previously unnoticed morphological features with diagnostic value.Results: The accuracy in distinguishing typical from ACs is hampered by interobserver variability in mitotic counting and the limitations of morphological criteria in identifying aggressive cases. Our study reveals that different Ki-67 cut-offs can categorise LNETs similarly to current WHO criteria. Counting mitoses in PHH3+ areas does not improve diagnosis, while providing a similar prognostic value to the current criteria. With the advantage of being time efficient, automated assessment of these markers leads to similar conclusions. Lastly, state-of-the-art deep learning modelling does not uncover undisclosed morphological features with diagnostic value.Conclusions: This study suggests that the mitotic criteria can be complemented by manual or automated assessment of Ki-67 or PHH3 protein expression, but these markers do not significantly improve the prognostic value of the current classification, as the AC group remains highly unspecific for aggressive cases. Therefore, we may have exhausted the potential of morphological features in classifying and prognosticating LNETs. Our study suggests that it might be time to shift the ...
    • Relation:
      hal-04655442; https://hal.science/hal-04655442; https://hal.science/hal-04655442v1/document; https://hal.science/hal-04655442v1/file/1-s2.0-S2059702924013607-main.pdf
    • الرقم المعرف:
      10.1016/j.esmoop.2024.103591
    • الدخول الالكتروني :
      https://doi.org/10.1016/j.esmoop.2024.103591
      https://hal.science/hal-04655442
      https://hal.science/hal-04655442v1/document
      https://hal.science/hal-04655442v1/file/1-s2.0-S2059702924013607-main.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.F084615A