نبذة مختصرة : In the context of “TO CHAIR” project, this work aims to improve the accuracy of short-term forecasts of maximum air temperature obtained from the https://weatherstack.com/website. The proposed methodology is based on a state-space representation that incorporates the latent process, the state, which is estimated recursively using the Kalman filter. The proposed model linearly and stochastically relates the forecasts from the website (as a covariate) to the observations of the maximum temperature recorded at the study site. The specification of the state-space model is performed using the maximum likelihood method under the assumption of normality of errors, where empirical confidence intervals are presented. In addition, this work also presents a treatment of outliers based on the ratios between the observed maximum temperature and the website forecasts. ; published
No Comments.