Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A Nitsche-based method for unilateral contact problems: numerical analysis

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB); Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC); Université Bourgogne Franche-Comté COMUE (UBFC)-Université Bourgogne Franche-Comté COMUE (UBFC); Institut de Mathématiques de Toulouse UMR5219 (IMT); Université Toulouse Capitole (UT Capitole); Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse); Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J); Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3); Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
    • بيانات النشر:
      HAL CCSD
      Society for Industrial and Applied Mathematics
    • الموضوع:
      2013
    • Collection:
      Université Toulouse 2 - Jean Jaurès: HAL
    • نبذة مختصرة :
      International audience ; We introduce a Nitsche-based formulation for the finite element discretization of the unilateral contact problem in linear elasticity. It features a weak treatment of the non-linear contact conditions through a consistent penalty term. Without any additional assumption on the contact set, we can prove theoretically its fully optimal convergence rate in the H1(Ω)-norm for linear finite elements in two dimensions, which is O(h^(1/2+ν)) when the solution lies in H^(3/2+ν)(Ω), 0 < ν ≤ 1/2. An interest of the formulation is that, conversely to Lagrange multiplier-based methods, no other unknown is introduced and no discrete inf-sup condition needs to be satisfied.
    • Relation:
      hal-00717711; https://hal.science/hal-00717711; https://hal.science/hal-00717711/document; https://hal.science/hal-00717711/file/paper030712.pdf
    • الرقم المعرف:
      10.1137/12088344X
    • الدخول الالكتروني :
      https://hal.science/hal-00717711
      https://hal.science/hal-00717711/document
      https://hal.science/hal-00717711/file/paper030712.pdf
      https://doi.org/10.1137/12088344X
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.F017F77A