نبذة مختصرة : Through this research, a robust aircraft design methodology is developed for analysis and optimization of the Air Vehicle (AV) segment of Unmanned Aerial Vehicle (UAV) systems. The analysis functionality of the AV design is integrated with a Genetic Algorithm (GA) to form an integrated Multi-disciplinary Design Optimization (MDO) methodology for optimal AV design synthesis. This research fills the gap in integrated subsonic fixed-wing UAV AV MDO methods. No known single methodology captures all of the phenomena of interest over the wide range of UAV families considered here. Key advancements include: 1) parametric Low Reynolds Number (LRN) airfoil aerodynamics formulation, 2) UAV systems mass properties definition, 3) wing structural weight methods, 4) self-optimizing flight performance model, 5) automated geometry algorithms, and 6) optimizer integration. Multiple methods are provided for many disciplines to enable flexibility in functionality, level of detail, computational expediency, and accuracy. The AV design methods are calibrated against the High-Altitude Long-Endurance (HALE) Global Hawk, Medium-Altitude Endurance (MAE) Predator, and Tactical Shadow 200 classes, which exhibit significant variations in mission performance requirements and scale from one another. Technology impacts on the design of the three UAV classes are evaluated from a representative system technology year through 2025. Avionics, subsystems, aerodynamics, design, payloads, propulsion, and structures technology trends are assembled or derived from a variety of sources. The technology investigation serves the purposes of validating the effectiveness of the integrated AV design methods and to highlight design implications of technology insertion through future years. Flight performance, payload performance, and other attributes within a vehicle family are fixed such that the changes in the AV designs represent technology differences alone, and not requirements evolution. The optimizer seeks to minimize AV design gross weight for a given ...
No Comments.