Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Do clinical interview transcripts generated by speech recognition software improve clinical reasoning performance in mock patient encounters? A prospective observational study

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      This work was supported by the Japan Medical Education Foundation under Grant
    • بيانات النشر:
      Springer Science and Business Media LLC
    • الموضوع:
      2023
    • نبذة مختصرة :
      Background To investigate whether speech recognition software for generating interview transcripts can provide more specific and precise feedback for evaluating medical interviews. Methods The effects of the two feedback methods on student performance in medical interviews were compared using a prospective observational trial. Seventy-nine medical students in a clinical clerkship were assigned to receive either speech-recognition feedback ( n = 39; SRS feedback group) or voice-recording feedback ( n = 40; IC recorder feedback group). All students’ medical interviewing skills during mock patient encounters were assessed twice, first using a mini-clinical evaluation exercise (mini-CEX) and then a checklist. Medical students then made the most appropriate diagnoses based on medical interviews. The diagnostic accuracy, mini-CEX, and checklist scores of the two groups were compared. Results According to the study results, the mean diagnostic accuracy rate ( SRS feedback group:1st mock 51.3%, 2nd mock 89.7%; IC recorder feedback group, 57.5%–67.5%; F(1, 77) = 4.0; p = 0.049), mini-CEX scores for overall clinical competence ( SRS feedback group: 1st mock 5.2 ± 1.1, 2nd mock 7.4 ± 0.9; IC recorder feedback group: 1st mock 5.6 ± 1.4, 2nd mock 6.1 ± 1.2; F(1, 77) = 35.7; p < 0.001), and checklist scores for clinical performance ( SRS feedback group: 1st mock 12.2 ± 2.4, 2nd mock 16.1 ± 1.7; IC recorder feedback group: 1st mock 13.1 ± 2.5, 2nd mock 13.8 ± 2.6; F(1, 77) = 26.1; p < 0.001) were higher with speech recognition-based feedback. Conclusions Speech-recognition-based feedback leads to higher diagnostic accuracy rates and higher mini-CEX and checklist scores. Trial registration This study was registered in the Japan Registry of Clinical Trials on June 14, 2022. Due to our misunderstanding of the trial registration requirements, we registered the trial retrospectively. This study was registered in the Japan Registry of Clinical Trials on 7/7/2022 (Clinical trial registration number: jRCT1030220188).
    • الرقم المعرف:
      10.1186/s12909-023-04246-9
    • الرقم المعرف:
      10.1186/s12909-023-04246-9.pdf
    • الرقم المعرف:
      10.1186/s12909-023-04246-9/fulltext.html
    • الدخول الالكتروني :
      http://dx.doi.org/10.1186/s12909-023-04246-9
      https://link.springer.com/content/pdf/10.1186/s12909-023-04246-9.pdf
      https://link.springer.com/article/10.1186/s12909-023-04246-9/fulltext.html
    • Rights:
      https://creativecommons.org/licenses/by/4.0 ; https://creativecommons.org/licenses/by/4.0
    • الرقم المعرف:
      edsbas.EE9EE9A0