Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

Incorporating depth information into few-shot semantic segmentation

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • معلومة اضافية
    • Contributors:
      Equipe VIBOT - VIsion pour la roBOTique ImViA EA7535 - ERL CNRS 6000 (VIBOT); Centre National de la Recherche Scientifique (CNRS)-Imagerie et Vision Artificielle Dijon (ImViA); Université de Bourgogne (UB)-Université de Bourgogne (UB); Informatique, BioInformatique, Systèmes Complexes (IBISC); Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay; Joint MSc in VIsion and RoBOTics VIBOT (Master VIBOT); Université de Bourgogne (UB)
    • بيانات النشر:
      HAL CCSD
    • الموضوع:
      2021
    • Collection:
      Université de Bourgogne (UB): HAL
    • الموضوع:
    • نبذة مختصرة :
      International audience ; Few-shot segmentation presents a significant challengefor semantic scene understanding under limited supervision.Namely, this task targets at generalizing the segmentationability of the model to new categories given a few samples.In order to obtain complete scene information, we extend theRGB-centric methods to take advantage of complementary depthinformation. In this paper, we propose a two-stream deep neuralnetwork based on metric learning. Our method, known as RDNet,learns class-specific prototype representations within RGB anddepth embedding spaces, respectively. The learned prototypesprovide effective semantic guidance on the corresponding RGBand depth query image, leading to more accurate performance.Moreover, we build a novel outdoor scene dataset, known asCityscapes-3i, using labeled RGB images and depth imagesfrom the Cityscapes dataset. We also perform ablation studiesto explore the effective use of depth information in few-shotsegmentation tasks. Experiments on Cityscapes-3i show that ourmethod achieves excellent results with visual and complementarygeometric cues from only a few labeled examples.
    • Relation:
      hal-02887063; https://univ-evry.hal.science/hal-02887063; https://univ-evry.hal.science/hal-02887063/document; https://univ-evry.hal.science/hal-02887063/file/ICPR_2020_YZ_DS_OM_FM.pdf
    • الدخول الالكتروني :
      https://univ-evry.hal.science/hal-02887063
      https://univ-evry.hal.science/hal-02887063/document
      https://univ-evry.hal.science/hal-02887063/file/ICPR_2020_YZ_DS_OM_FM.pdf
    • Rights:
      info:eu-repo/semantics/OpenAccess
    • الرقم المعرف:
      edsbas.EE87A0A4